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Glioblastoma, the most aggressive primary brain cancer, has a dismal
prognosis, yet systemic treatment is limited to DNA-alkylating
chemotherapies. New therapeutic strategies may emerge from explo-

ring neurodevelopmental and neurophysiological vulnerabilities of
glioblastoma. To this end, we systematically screened repurposable
neuroactive drugs in glioblastoma patient surgery material using a clinically
concordant and single-cell resolved platform. Profiling more than 2,500 ex
vivo drug responses across 27 patients and 132 drugs identified class-diverse
neuroactive drugs with potent anti-glioblastoma efficacy that were validated
across model systems. Interpretable molecular machine learning of drug-
target networks revealed neuroactive convergence on AP-1/BTG-driven
glioblastoma suppression, enabling expanded in silico screening of more
than1million compounds with high patient validation accuracy. Deep
multimodal profiling confirmed Ca*-driven AP-1/BTG-pathway induction

as aneuro-oncological glioblastoma vulnerability, epitomized by the
anti-depressant vortioxetine synergizing with current standard-of-care
chemotherapiesin vivo. These findings establish an actionable framework
for glioblastoma treatment rooted inits neural etiology.

Glioblastomais the deadliest primary brain cancer with limited treat-
ment options, shaped by heterogeneous developmental programs,
genetic drivers and tumor microenvironments (TMEs)'®. Despite an
increasing understanding of this heterogeneity, the alkylating agent
temozolomide (TMZ), prolonging median survival from 12 months to
15 months, remains the only first-line drug approved for glioblastoma”®,
Targeted therapies have been largely unsuccessful, in part due to the
blood-brain barrier (BBB) limiting tumor accessibility, the presence

of treatment-resistant glioblastoma stem cells (GSCs) and the lack of
clinically predictive patient model systems’ ", Systemically addressing
these therapeutic roadblocks is an urgent clinical need.

An emerging paradigm is to consider the neurobiology of
glioblastoma, including stemness signatures resembling neural
development®>*'*™7, synaptic integration of cancer cells into neu-
ral circuits'®* and the modulation of specific neurotransmitter or
other secretory pathways in the TME'®**"*', Such neural aspects of
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glioblastoma offer clinically actionable vulnerabilities that may be
pharmacologically targeted by repurposing approved ‘neuroactive’
drugs (NADs) designed to cross the BBB and routinely prescribed for
other neurological indications. Exciting recent studies have reported
tumor-extrinsic modulation via the brain-glioma interface as well
as unexpected roles of certain metabolic and stemness pathways in
gliomas that can be targeted by specific NADs* >**"*°, However, for the
vast majority of NADs, their anti-cancer activity has not beentestedin
prospective glioblastoma patient cohorts, and tumor-intrinsic NAD
targets remainincompletely mapped. Therefore, asystematic preclini-
cal evaluation of neurotherapeutic glioblastoma vulnerabilities and
personalized treatment opportunities is needed.

Results

Clinically concordant ex vivo drug profiling for glioblastoma
Toidentify clinically actionable therapeutic vulnerabilities of glioblas-
toma, we performed prospective multimodal drug profiling across
IDH-wildtype glioblastoma patient samples, two-dimensional (2D) and
three-dimensional (3D) patient-derived cell (PDC) cultures, machine
learning-based drug-target networks and orthotopic mouse models
(Fig.1laand Supplementary Tables1and 2). We adapted pharmacoscopy
(PCY), an ex vivo image-based drug screening platform previously
validated in functional precision medicine trials for hematological
malignancies® *, for the functional characterization of patient glioblas-
tomatissues. For both solid tumors and blood cancers, PCY identifies
‘on-target’ drug responses by quantifying the drug-induced specific
reduction of cancer cells relative to non-malignant TME cells based on
immunofluorescence (IF) staining. We, therefore, first set out to define
and validate a clinically relevant marker profile that would capture the
majority of glioblastoma cells across patient samples.

Glioblastoma cells adopt a spectrum of malignant cellular
programs recapitulating neural differentiation, ranging from neu-
ral progenitor-like GSCs to more mature astrocyte-like cellular
states>***153¢_ As a consequence, neural progenitor markers (for
example, Nestin) and astrocyte lineage markers (for example, SI00B
and GFAP) are widely used to characterize patient tumors'®?22373,
with Nestin® GSCs representing a treatment-resistant subpopulation
that sustains long-term tumor growth’ ¢,

Analysis of 25,510 single-cell transcriptomes spanning three
independent single-cell RNA sequencing (scRNA-seq) datasets and
22 patients (including four from this study) confirmed that glioblas-
tomacells defined by Nestin/S100B expression and absence ofimmune
marker CD45 capture the majority of malignant cells (Fig. 1b,c and
Extended DataFig.1a-d). These cells displayed the highest expression
of markers associated with malignancy (for example, SOX2, CD133, EGFR
andKi67) incomparisonto CD45" immune cells and cells triple-negative
for Nestin, SI00B and CD45 (referred to as ‘other’ cells; Fig. 1b and
Extended Data Fig. 1d). Glioblastoma cells also expressed the highest
level of markers attributed to the neural properties of glioblastoma,
such as synaptic circuit integration, neuronal activity-regulated par-
acrine signaling and tumor microtube formation (Fig. 1b and Extended
DataFig.1d). Additional IF staining of patient samples confirmed that
Nestin® cells had higher expression of these malignancy and neural
properties-associated markers (Extended DataFig.1e,f). Furthermore,
inferred chromosomal copy number alteration (CNA) analysis of hall-
mark genetic alterationsin glioblastoma confirmed the Nestin/S100B
and CD45 marker definition to capture the majority of malignant
cells of patients inwhich these hallmark CNAs were detected (Fig. 1c).
Lastly, cell-type-specific enrichment analysis of the triple-negative
‘other’ cells revealed additional TME cell types, including CD45-low
tumor-associated macrophages/microglia, fibroblasts and stromal
cells (Extended DataFig.1g,h).

To evaluate the clinical concordance of glioblastoma drug
response profiling defined by this marker panel, we measured ex vivo
responses to first-line and second-line glioblastoma chemotherapies

by PCY in prospectively sampled surgery material from 27 patients with
IDH-wildtype glioblastoma (‘prospective cohort’; n=27; Fig. 1d and
Supplementary Tables1and 2). Each patient sample was dissociated on
the day of surgery and directly incubated with drugs for 48 h (Fig. 1e).
Subsequent IF staining of the marker panel and imaging by automated
microscopy revealed a high degree of inter-tumor and intra-tumor
heterogeneity at baseline (Fig. 1f,g): across patients, glioblastoma cells
ranged from 4% to 39%, immune cells from 1% to 82% and ‘other’ cells
from13%to 84% (Fig.1g). Inthe absence of drug treatment, on average,
less than 10% of glioblastoma cells were apoptotic at 48 h (Extended
Data Fig. 1i-k).

We next quantified the drug-induced ‘on-target’ tumor reduction,
where a positive PCY score indicates a greater reduction of glioblas-
toma cells relative to TME cells. Limiting our analysis to newly diag-
nosed patients who received TMZ as part of their first-line treatment
inthe clinicand with documented clinical outcome (16 of 27 patients),
we found that higher ex vivo TMZ sensitivity of glioblastoma cells, but
not of immune or other cells, was associated with improved patient
outcome (Fig.1h,iand Extended DataFig.1l,m). This clinical association
was validated in a retrospective cohort (n =18 biobanked samples),
where higher ex vivo TMZ sensitivity of glioblastoma cells was prog-
nostic for longer progression-free survival (PFS) and overall survival
(0S) (Fig. 1j). Inversely, across both cohorts, stratification by previ-
ously reported median PFS for TMZ chemoradiotherapy (6.9 months”)
revealed higher ex vivo TMZ sensitivities in patients with longer survival
(Fig. 1k). Lastly, methylated MGMT promoter status was associated with
higher ex vivo TMZ sensitivities, recapitulating this well-established
prognostic factor (Fig. 11). Taken together, these results demonstrate
the utility of PCY for therapeutic discovery and patient stratification
inglioblastoma.

Select NADs display robust anti-glioblastoma activity

Tofind repurposable drug candidates for glioblastoma treatment, we
tested both neuroactive and oncology drug libraries across patient
samples by PCY (Fig. 2a-g, Extended Data Fig. 2a-g and Supplemen-
tary Table2). The NAD library, screened across the prospective cohort
(n=27), consisted of drugs approved for neurological diseases such
as depression, schizophrenia and Alzheimer’s disease (n = 67 drugs;
20 pM). In contrast, the oncology drug (ONCD) library, screened when
enough surgical material was available (n =12), included cancer ther-
apies such as cyclin-dependent kinase (CDK) and receptor tyrosine
kinase (RTK) inhibitors (n = 65 drugs; 10 pM). As before, we measured
the ‘on-target’ reduction of glioblastoma cells after 48 h of drugincuba-
tion after surgery while also quantifying the drug responses ofimmune
and ‘other’ cells (Extended Data Fig. 2b).

Across the cohort, we identified 13.5% of on-target ex vivo drug
responses (349 out of 2,589 measured; PCY score > 0 and false dis-
covery rate (FDR)-adjusted g < 0.05; Fig. 2b). The top four drugs were
oncology drugs targeting different aspects of glioma etiology: the
oxidative stress inducer elesclomol (rank 1 out of 132 drugs), tyrosine
kinase inhibitors sorafenib (rank 2) and ponatinib (rank 4) and the CDK
inhibitor ribociclib (rank 3). Several top ONCD candidates had reported
BBB permeability, including elesclomol, EGFR inhibitor osimertinib
(rank11) and tyrosine kinase inhibitor regorafenib (rank 9). Exploring
the clinical and pharmacogenetic associations with ONCD responses
across patients revealed higher ex vivo sensitivity to elesclomol with
age, higher sensitivity to CDK4/6 inhibitor abemaciclibin patients with
TP53 mutations and higher sensitivity to RTK inhibitor pazopanib in
patients with RET copy number loss (Extended Data Fig. 2c-e). This
exploratory analysis can, thus, efficiently generate hypotheses for per-
sonalized glioblastoma treatment opportunities, warranting further
evaluationinlarger cohorts.

NADs resulted in a similar fraction of significant on-target
responses across the cohort (11.3%; Fig. 2b), with 15 NADs displaying
potent anti-glioblastoma activity across patients (referred to as ‘top
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Fig.1| Clinical concordance of single-cell ex vivo drug profiling for
glioblastoma. a, Prospective multimodal profiling of a glioblastoma patient
cohort (n=27 patients) and diverse glioblastoma disease models. Patient
numbers areindicated per data type. b, Percent of cells expressing each gene
(yaxis) per subpopulation (x axis; n =22 patients; data points; shape indicates
scRNA-seq dataset). Pvalues were calculated by two-tailed Wilcoxon test. Box
plots show 25th-75th percentiles with a line at the median; whiskers extend to
1.5times the interquartile range. ¢, Inferred CNA analysis based on scRNA-seq
datasets inb. Matched patient samples are connected by gray lines. Patients
with less than 5% of cells with detected CNAs are excluded. d, Overview of

the prospective cohort (n =27 patients). See Supplementary Table 1 for full
cohortinformation. conf., confidence. e, Real-time image-based ex vivo drug
screening (PCY) workflow of glioblastoma patient samples. f, Example IF image
ofaglioblastoma patient sample (P040; scale bar, 60 um). g, Baseline cellular
composition across the prospective glioblastoma cohort measured by PCY.
Underlines indicate patients with recurrent glioblastoma. h, GSD (rows; n=3

drugs) response across patient samples (columns). GSD response is averaged
across concentrations for TMZ and lomustine/carmustine (CCNU and BCNU,
respectively).i,j, Stratification of newly diagnosed glioblastoma patient
survival based on ex vivo TMZ sensitivity of (Nestin/SI00B* and CD45") cells
(blue, TMZ sensitive; red, TMZ resistant). Kaplan-Meier survival curves are
compared using the log-rank (Mantel-Cox) test, and the optimal TMZ PCY
score cutpoint to stratify patients was determined by maximally selected

rank statistics. i, PFS of the prospective glioblastoma cohort (n = 16 annotated
patients) stratified by TMZ PCY score (100 pM). Tick mark indicates ongoing
response. j, PFS (left) and OS (right) of the retrospective cohort (n = 18 patients)
stratified by mean TMZ PCY score. k, TMZ PCY scores (dots; n = 34 patients
across both cohorts) stratified by clinically reported median PFS’ to first-line
TMZ chemoradiotherapy. Wilcoxon test. 1, TMZ (50 pM) PCY scores across both
cohorts (dots; n = 41 patients) stratified by MGMT promoter methylation status.
Wilcoxon test. Box plots as in b. GBM, glioblastoma.

NADs’ or ‘PCY-hit NADs’; mean PCY score > 0.03; Fig. 2b,g and Supple-
mentary Table 2). The top-ranking NAD was the anti-depressant vortiox-
etine (rank 5 overall; Fig. 2c,g and Extended Data Fig. 2h), which showed
significant ex vivo efficacy in18 out of 27 patients (66.7%). Other clini-
cally attractive NADs included paroxetine (rank 15, 44.4% of patients)

and fluoxetine (rank 19, 40.7% of patients), both anti-depressants of
the selective serotonin reuptake inhibitor (SSRI) class, as well as the
anti-psychotic brexpiprazole (rank 17, 48.1% of patients) (Fig. 2c,g).
However, not all identified top NADs were clinically attractive, con-
sidering the reported side effects of cannabinoid receptor blocker

Nature Medicine


http://www.nature.com/naturemedicine

Article

https://doi.org/10.1038/s41591-024-03224-y

Glioblastoma patients
o Newly diagnosed (n = 22)
e Recurrent (n=5)

[Surgery and tissue dissociation|

\ |
No
NAD library
only

> 25 million cells total

Yes
NAD library
ONCD library

Ex vivo drug screening
B Neuroactive (NADs), n = 27 patients

B Oncology (ONCDs), n = 12 patients
v
PCY score calculation
and drug ranking

¥
Clinical association and
pharmacogenetic analysis

Clinical parameter
® Age
® Ki67 (%)

® Recurrent status

-log,4(q value)

MGMT methylation

'On-target’

30 A

NADs: 204/1809 (11.3%)
ONCDs: 145/780 (18.6%) +

(0]
PCY score
Category

A NAD
B ONCD

Biological sex
® Tumor localization

u K|67:ALECTI‘\“B

Ki67:REGORAFENIB

A Tumor Loc:ZIPRASIDONE

A Tumor Loc:SERTINDOLE

Age:ELESCLOMOL
|

-log,o(P adij.)

Patients with PCY score >0.03 per drug (%)

Cc
Elesc#omol
epmene, Drug t
02 - ‘ FOHB[H’Hb ruQ ype
i, Vortioxetine M Neuroactive (NADs), n = 67 drugs
—~Regorafenib
Osimertinib M Oncology (ONCDs), n = 65 drugs
Olanzapine
o —Paroxetine
o 014 Brexpiprazole
[s) ~Fluoxetine
12}
g iy
= ] (- —
= |
2 Drug class
Anti-depressant M Anti-convulsant Bl CDK RTK (ALK) MAPK Sonidcg\b/j
-0.1 7| Antiemetic W Alzheimer's DNA alkyl. M RTK (EGFR) mTOR  Ziprasidone
W Anti-psychotic M Parkinson’s DNA rep. RTK (VEGFR) M OtherONCDVé';C"iS“gfeJ
r
M Drug abuse Other NAD Tubulin M RTK (other) Paliperidone/
Drug ranking (n =132 drugs)
e Genetic alteration Category
® CDKN2A EGFR ® FGFR2 ® PTEN @ RET ® TP53 A NAD
® CDKN2B  ® EGFRvIll NF1 RB1 TERT B ONCD
20 A FGFR2:SERTINDOLE
m TP53:ABEMACICLIB
= 15 A FGFR2CLOZAPINE ™ RET:PAZOPANIB
T o A ool __L_.
a 2 " "o
o 10 y | ] [ ] n
g LN "
3 § 4.2 r 4 .
0.5 A B ApgAn = 1
A Lgh = 4 j N " L a2 -
¢ detBaRANER A Drsd !
o 4 Ms¢ 5] B Al A n u
(0] 25 50 100
Patients with PCY score >0.03 per drug (%)

Glioblastoma patient samples (PCY score: Nestin/S100B* and CD45™ cells)

GBM patient sample

Fig.2|PCY identifies repurposable NADs with tumor-intrinsic anti-
glioblastoma activity. a, PCY overview for screening neuroactive (NAD) and
oncological (ONCD) drug libraries across the prospective patient cohort (n =27
patients) ex vivo. b, Volcano plot of all measured glioblastoma PCY scores and
corresponding significance (FDR-adjusted g value, Student’s two-tailed ¢-test).
‘On-target’ responses (blue; PCY score > 0, -logl0(g value) >1.3) per drug
library areindicated. ¢, Drug ranking (n =132 drugs) by mean PCY scores across
patients. alkyl., alkylation; rep., replication. d, Relationship between clinical
parameters and PCY score across NADs and ONCDs. Each datapoint represents
a[clinical parameter:drug] association. e, As in d but for genetic alterations.
d,e, Colored by clinical parameter/gene, and shape denotes drug category.

Red dashed line, significance threshold. Adjusted Pvalues were calculated

Drug score [ = LI pEPO29
= - B o = PO13
W os | e ]x * L[N Po25
i . 5 L E ot
0o * [ |* * * P0OO7
g UL F Po24
= &l P028
W o5 . - a ESQS
BREG *
Score type | e e - | PO33
or 1 e
W viability || 0 B 5 & ol PO34
i : Ao Jo
57 (o, RN
Ki67 (%) | il | Eg%é
100% 9] o e
o | iz
0% B LI/ W PO16
B 1] P026
MGMT prom. || L PO12
B 1] P0O17
B unmethyl. || LIS PO14
Methyl. || Nl | 581392
Nd B HE
a L P022
Sex Patient-derived cell lines (PCY score: Nestin® cells)
Male - E-] | B 2 I - 2 A A 3 I A A - I
L
Female 2 I NI T O T O T A Y I 0
Stat * * e e e e e e T T T T T T A T T T T T T T T po
atus
[] Newly diag. Clioblastoma cell lines (viability score: relative reduction in spheroid area or total cell number)
Recurrent ] [ ] [T ] ZH-161
[ [ * ZH-562
Drug class || R s : 1z : el | L2z
AD
.AE VEVVVVLAVVIBVADVVOEEVC QD VLVVVEVOVOVVODCE [ORON] cCo0o VEVVDVDV VO FLLD O
I ap EGEECEECEE2EGESEUGGESEEEEREGUURREETS . SSc SEE SEUEECSSY553S
oo E N O NG ER S O NERSERSEOECRKBEEESGRERS aos sa¥ SSEQELII 93T
B oA O 2 X XG5 0203c803S 0 cEOE T 008 20Ts80220%05% S8a 2= 8802083 5.E8
05065c0005502 2002082 N 88058095250 > Eacc TOS50X3IONFIED
AC CENESSSo g8 05 8Esan 2 G s TG00t EFSESP5ERR Egs 85 30 5° 8888538
[ YA Sz g20%5%57S £IERETgT 88285 8875 24F00 3§88 gs £52°3 5pages
<2 & g 23 2 5 s£ < > o ow
M rD = 5 S £ @
o o %) = o
oT a o é

by Wilcoxon test for two groups and by Kruskal-Wallis test for three or more,
excluding cases where any category was present in fewer than three patients. f,
Example patient sample image (P040; scale bar, 100 um), PDC line (P040.PDC;
scale bar, 100 pum), adherent glioblastoma cell line (LN-229; scale bar, 150 pm)
and glioblastoma-initiating cell line (ZH-562; scale bar, 250 pm). Stains are
indicated in their respective colors. g, NAD score matrix (n = 67 drugs; columns)
across patient samples (n =27; rows), PDC lines (n = 3; patient ID followed by .C’)
and glioblastoma cell lines (n = 4). Drug score (color scale) indicates the PCY
score for patient samples and PDC lines (one-tailed ¢-test) or viability score for
glioblastoma cell lines (two-tailed ¢-test). Values beyond color scale limits were
set to either minimum or maximum values. For clinical and drug annotations, see
Supplementary Tables1and 2. *FDR-adjusted P < 0.05.
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rimonabant (rank 6) and anti-psychotic zotepine (rank 7), yet they may
provide mechanistic insights. These PCY-based NAD responses were
reproduced using different ways to detect apoptotic cells (Extended
DataFig. 2i-k and Methods) and were robust to tumor content, assay
timepoint and culture condition (Supplementary Fig. 1). Exploring
their clinical and pharmacogenetic associations revealed higher ex
vivo sensitivity to brexpiprazole in males (Fig. 2d and Extended Data
Fig. 2f) and higher sertindole sensitivity in patients with FGFR2 copy
number loss (Fig. 2e and Extended Data Fig. 2g).

Wetested the NAD library in additional glioblastoma disease mod-
els, including PDCs (n = 3 lines; Fig. 2f,g) and commonly used 2D and
3D glioblastoma cell lines (n = 4 lines; Fig. 2f,g). Top NADs effectively
reduced fractions of Nestin® cells and metabolic activity in PDCs, total
cellnumbersin adherent cell lines (LN-229 and LN-308) and spheroid
sizeinglioblastoma-initiating cell lines (ZH-161and ZH-562), with con-
firmed concentration-response relationships (Fig. 2g, Extended Data
Fig.3a-d and Supplementary Fig. 2). The efficacy of anti-depressants
vortioxetine, paroxetine and fluoxetine were exceptionally consist-
ent, where vortioxetine was the top-ranking NAD across all model
systems tested (Fig. 2g). Thus, by comprehensively screening across
glioblastoma patient surgery material and model systems, we identi-
fied aset of repurposable NADs with potent anti-glioblastoma efficacy.
The consistency of these top NADs across model systems, evenin the
absence of the TME and synaptic circuitry, indicates the presence of
one or more tumor-intrinsic neural vulnerabilities.

Divergent functional dependencies on NAD targets

The NADs with anti-glioblastoma efficacy represented diverse drug
classes, indicating that canonical mode of action did not explain their
efficacy (Fig.3a). Amongour tested serotonin and dopamine pathway
modulators, for example, only four out of 11 anti-depressants (36%) and
sixout of 16 anti-psychotics (38%) exhibited anti-glioblastoma activity
in patient samples (Extended Data Fig. 4a). Such drug classifications,
however, simplify the polypharmacological drug-target profiles of
NADs. Most NADs act on multiple primary target genes (PTGs), includ-
ing ion channels and G-protein-coupled receptors (GPCRs), whose
expression remains a largely unexplored dimension of glioblastoma
heterogeneity.

To thisend, we evaluated NAD PTG expression profiles across the
three glioblastoma scRNA-seq datasets (Fig. 3b,c and Extended Data
Fig. 4b,c)**°. Among PTGs with reported biochemical interactions
with NADs (based on the Drug Targets Commons (DTC)*), expres-
sion of potassium channels, glutamate receptors and cannabinoid
receptors were enriched in glioblastoma cells, whereas other target
classes showed broader expression patterns (Extended Data Fig. 4b).
To characterize PTG expression heterogeneity, we calculated neural
specificity and patient specificity scores (Fig. 3b, Extended DataFig. 4c,
Supplementary Table 3 and Methods), where a higher neural specificity
indicatesrelative enrichmentinneural lineage cells (range-1to1),anda
higher patient specificity (range 0 to1) indicates more patient-specific
expression. Gene transcripts encoding ion channels and receptors
with high neural specificity included the calcium signaling modulator
SIGMAR1 and cannabinoid receptor CNR1. Both had considerably lower
patient specificity than oncogenic RTKs EGFR and PDGFRA, despite
similar detection levels (Fig. 3c and Supplementary Table 3), highlight-
ing consistent pan-patient expression of NAD targetsin glioblastoma.

We tested the dependency on these NAD PTGs by performing
areverse genetic screen in LN-229 glioblastoma cells (n =59 genes;
Fig.3d, Extended DataFig.4d and Supplementary Table 4) with similar
PTG expression and NAD sensitivities to patient samples (Figs. 2g and
3d). Knockdown of nine PTGs significantly decreased cell viability
(Fig. 3d and Extended Data Fig. 4d), of which lower expression levels
of DRD1, DRD2, HTR3A and TACRI were also associated with better
patient survival in The Cancer Genome Atlas (TCGA) glioblastoma
cohort (Extended Data Fig. 4e). However, these PTG dependencies

were predominantly targeted by NADs without anti-glioblastoma
activity by PCY. For example, only five of the 16 DRDI-targeting NADs,
and only one out of 11 HTR3A-targeting NADs, were PCY-hits (Fig. 3e).
Therefore, although presenting possible neural vulnerabilities, these
genetic PTG dependencies are unlikely to explain the anti-glioblastoma
activity of our top NADs.

Drug-target network convergence predicts NAD efficacy
Despite their chemical and primary target diversity, top NADs may con-
verge upon common downstream signaling pathways. To test this, we
developed aninterpretable machinelearning approach that searches
for ‘convergence of secondary drug targets analyzed by regularized
regression’ (COSTAR). COSTAR is designed to identify the minimal
drug-target connectivity signature that is maximally predictive of
patient drug efficacy (Methods).

We extended the drug-target search space to include PTGs with
any bioactivity annotated by DTC (extended primary target genes
(ePTGs); Fig. 4a) and their secondary target genes (STGs) based on
protein-proteininteractions (STRING database; Fig. 4a). Thisresulted
in a drug-target connectivity map, or ‘COSTAR constellation’, of all
DTC-annotated drugs in our NAD and ONCD libraries (n =127 of 132
drugs) with 975 ePTGs, 10,573 STGs and 114,517 edges (Fig. 4b). Using
logistic LASSO regression, we trained amodel that identifies the mini-
mal set of STGs that maximally discriminates PCY-hit drugs (n=30;
top 15 from both drug libraries) from PCY-negative drugs (n=97) ina
cross-validation setting (Fig. 4c and Extended Data Fig. 5a). Thereby,
COSTAR converged upon the minimal connectivity signature that was
predictive of ex vivo anti-glioblastoma drug efficacy (Fig. 4a-e and
Extended DataFig.5a-c). COSTAR identified asignature that classified
the127 drugs with 92.1% accuracy, correctly predicting 20 of 30 PCY-hit
drugs and 96 of 97 PCY-negative drugs (Fig. 4d).

The COSTAR connectivity signature linked PCY-hit NADs to the
secondary target BTG2, predominantly through JUN and TP53 ePTGs
(Fig. 4e and Extended Data Fig. 5b,c). BTG2 and TP53 are both tumor
suppressors that control cell cycle and differentiation, whereasJUNis a
member of the AP-1transcriptionfactor (TF) family that, inaneural con-
text, regulates gene expression and apoptosis in response to stimuli,
suchas neural activity or insult*2. Conversely, most PCY-hit ONCDs were
connected to the secondary target AP1S2, aproteininvolvedin clathrin
coat assembly, through the cyclin G-associated kinase GAK (Fig. 4e
and Extended DataFig. 5b,c). Taken together, this reveals therapeutic
pathway convergence on AP-1TFsand cell cycle regulation asa unique
signature predictive of anti-glioblastoma activity of NADs.

COSTAR can compute the hit probability of any annotated com-
pound by matching its drug-target profile to the learned connec-
tivity signature. To evaluate the predictive power of the COSTAR
signature and find additional NAD candidates, we screened 1,120,823
DTC-annotated compounds in silico and experimentally validated
23 top-scoring and 25 bottom-scoring compounds (COSTAR-HIT
and COSTAR-NEG, respectively; Fig. 4f and Supplementary Data 2).
Of these, only the COSTAR-HITs were linked to the secondary target
BTG2, primarily through JUN (Fig. 4g,h). We tested all 48 compounds
across four glioblastoma patient samples and observed excellent
agreement between COSTAR predictions and PCY scores (mean area
under the curve (AUC) = 0.94; Fig. 4i,j). The confirmed COSTAR-HITs
again represented diverse NAD classes, including the anti-psychotic
trifluoperazine, anti-parkinsonian ethopropazine and anti-depressant
sertraline (Fig. 4i). These results substantiate AP-1/BTG pathway con-
vergence as a therapeutic signature that predicts NADs with ex vivo
anti-glioblastoma activity.

Altered tumor neurophysiology induces an anti-proliferative
program

The COSTAR signature suggests acommon gene regulatory network
(GRN) underlying the activity of PCY-hit NADs. To confirm this, we
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Fig. 3| Divergent genetic dependencies on canonical primary target genes of
NADs. a, Drug mode of action for all NADs (n = 67 drugs; left) and top NAD

hits (n =15drugs with amean patient PCY score > 0.03; right) represented as
stacked bar plots. NS, not significant by hypergeometric enrichment test.

b, NAD PTG expression in 22 glioblastoma patient samples across three scRNA-
seq datasets (shape) plotted as the neural specificity score (x axis) versus patient
specificity score (y axis) for each PTG (dot, gene; size, percent expression; color,
receptor class). ¢, scRNA-seq log,,(expression) of selected neuroactive PTGs
(SIGMAR1, CNRI and GRIA2) and oncogenic RTK (PDGFRA) visualized on the UMAP

projection, as in Extended Data Fig. 1b. d, Baseline RNA-seq expression (top panel;
yaxis; color, receptor class) asin b and siRNA-mediated gene silencing of PTGs in
LN-229 cells (n =59 siRNA conditions; columns; bottom panel). Total cell number
(TCN) reduction and cleaved CASP3" fraction increase (cl.CASP3") relative to

the (=) control FLUC siRNA condition depicted as a circle per gene. Two-tailed
t-test where circle sizes scale with the —log,,(FDR-adjusted P value), and color
represents relative change for each tested PTG. e, Example PTGs with genetic
dependencies (core nodes) linking to both PCY-hit (pink; NAD hits) and PCY-
negative (gray; Negs) drugs. PTGs are colored according to receptor classasinb.

measured the transcriptional response of LN-229 cellsat 6 hand 22 h
to 19 select drugs by DRUG-seq* (Fig. 5a-d, Extended Data Fig. 6a-g
and Supplementary Table 2). In alignment with COSTAR, differential
gene expression analysis revealed acommon AP-1and BTG signature
induced by diverse PCY-hit NADs (Fig. 5b,d and Extended Data Fig. 6¢).
Thisinvolved rapid and sustained upregulation of eight AP-1TFs, includ-
ing immediate early genes (IEGs) JUN and c-FOS, known to mediate
neural activity and apoptosis*>****¢, and stress-induced AP-1 TFs ATF3
and ATF4 (Fig.5b,d and Extended DataFig. 6¢). Conversely, downregu-
lated AP-1factors included ATF5 and ATF6B, shown to promote glio-
blastoma cell survival and radioresistance, respectively*”**, whereas
FOSL1,implicated inresponse to irradiation in glioblastoma, showed
no upregulation® (Extended Data Fig. 6e). Additional upregulated
IEGs NR4A1, EGRI and ARC and MAPK pathway enrichment further
implicated neural activity-like signaling (Fig. 5b and Extended Data
Fig. 6d). BTG1, ahomolog of BTG2, was among the top 20 most sig-
nificantly upregulated genes (Fig. 5b,d and Extended Data Fig. 6¢),
whereas BTG2 was particularly induced in response to vortioxetine
(Fig.5d).In contrast, tested ONCDs, including first-line chemotherapy
TMZ, did notelicit this global AP-1/BTG response (Fig. 5d and Extended
DataFig. 6¢). Transcription factor binding-site (TFBS) enrichment
analysis ofthe NAD-induced genes at 6 hrevealed AP-1, ATF and CREB,
a calcium-activated regulator of AP-1 transcription®, as the most sig-
nificantly enriched motifs present among 60% of upregulated genes
(Fig. 5b,c and Extended Data Fig. 6f). At 22 h, expression of AP-1 fac-
tors was sustained, and forkhead TF family motifs, known to regulate

long-term cell differentiation succeeding AP-1(ref. 51), were enriched
among the upregulated genes (Extended Data Fig. 6f).

AP-1 activation and IEG expression are typically preceded by
Ca*-dependent signaling in neural lineage cells*****>3, We, there-
fore, measured both extracellular Ca** influx as well as endoplasmic
reticulum (ER) Ca*" store release by high-throughput FLIPR assay
(n=17-18 drugs; Supplementary Table 2). Although none of the tested
PCY-negative NADs and PCY-hit ONCDs triggered Ca* influx, five out
of eight PCY-hit NADs, including anti-depressants vortioxetine, parox-
etine and fluoxetine, elicited immediate and strong extracellular Ca*
influx, notinvolving ER Ca* store release (Fig. Se,fand Extended Data
Fig.7a). Theseresults could be recapitulatedina PDC culture (P050.C;
Extended Data Fig. 7b).

We delineated the single-cell Ca** dynamics elicited by vortiox-
etine, the most potent preclinical candidate, by live-cell Ca*" imaging
across four PDC cultures and two cell lines (n = 3,561 cells; Supple-
mentary Video1). Across all, vortioxetine robustly induced Ca* influx
(Extended DataFig. 7c), with the PDC cultures displaying baseline Ca**
oscillations reminiscent of recent in vivo observations (Fig. 5g and
Extended Data Fig. 7d,e)****. Vortioxetine increased the fraction of
oscillating glioblastoma cells (Fig. 5g,h) and, for baseline oscillating
cells, increased both their maximum peak amplitude (in 3/4 PDClines)
and mean peak amplitude (2/4 PDClines) (Extended DataFig. 7f). Elec-
trophysiological characterization of vortioxetine response in LN-229
and LN-308lines revealed LN-229-specific depolarization of the resting
membrane potential (Extended Data Fig. 7g) and significant changesin
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Fig. 4 |Molecular convergence on a neuroactive drug-target connectivity
signature predictive of anti-glioblastoma efficacy. a, COSTAR workflow.

b, COSTAR network of 127 PCY-tested drugs, 965 ePTGs and 10,573 STGs,
connected by 114,517 edges. ¢, COSTAR method by logistic LASSO regression.
See also Methods. d, COSTAR training model performance compared to PCY-
based experimental ground truth. e, COSTAR connectivity (solid lines) reveals
convergence of NAD (pink) and ONCD (blue) hits to key ePTGs (gray) and STGs
(yellow). See Extended Data Fig. Sc for the full model. Additional proteins (white
nodes) with high-confidence interactions to STGs (dashed lines) are shown.

f, Insilico drug screen across 1,120,823 compounds by COSTAR. Compounds
areranked (x axis) by their predicted PCY-hit probability (COSTAR score; y axis).
Predicted drug hits (COSTAR-HIT; mint green) and predicted non-hits (COSTAR-
NEG; black) selected for experimental validation are indicated. g, ePTGs (x axis)
ranked by their integrated contribution ‘C’ to predict a hit (+1) or anon-hit (-1)
(yaxis) in the COSTAR model, separated for COSTAR-HITs (top) and COSTAR-
NEGs (bottom) (‘d’). h, Drug-target connectivity of select COSTAR-predicted

drugs (columns; n =23 COSTAR-HIT drugs; n = 25 COSTAR-NEG drugs) to primary
and secondary drug targets (rows). COSTAR subscore (heatmap color scale) is
the LASSO model coefficient multiplied by the integrated connectivity of drug to
target mapping. Target genes with absolute COSTAR LASSO coefficients greater
than O.1aredisplayed. i, Experimental ex vivo validation by PCY of COSTAR-HIT
(n=23; mint green) and COSTAR-NEG (n =25; black) drugs (columns) across four
glioblastoma patient samples (rows) including positive (PCY-hits; pink; n = 3)
and negative (PCY-negative; dark gray; n=1) control drugs. Heatmap color scale
indicates the PCY score of glioblastoma cells. One-tailed ¢-test; *FDR-adjusted
P<0.05. Outliers beyond color scale limits are set to minimum and maximum
values.j, Receiver operating characteristic (ROC) curves (gray, n = 4 patients;
mint green, mean across patients; red dashed, random classifier) describing the
COSTAR validation accuracy in glioblastoma patient samples of the COSTAR-
predicted drugs (n = 48 drugs; corresponding to i). FPR, false-positive rate;
PCY-HIT, PCY-hit; PCY-NEG, PCY-negative; TPR, true-positive rate.
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the current-voltage characteristics (I-V curves) inbothlines (Extended
DataFig.7i,j). These results demonstrate that NADs and, in particular,
vortioxetine rapidly alter glioblastoma neurophysiology preceding
IEG/AP-1upregulation.

Downstream of AP-1upregulation, genome-wide mapping of tran-
scriptional regulatory networks (PathwayNet)** identified members
of the AP-1 TF family to directly mediate BTG1/2 tumor suppressor
gene expression (Fig. 5i). Furthermore, a strong correlation between
the degree of induction of the COSTAR signature and the ex vivo
anti-glioblastoma efficacy across NADs provided circumstantial evi-
dence for a causal role of this GRN (R=0.72, P=1.4 x 107%; Extended
DataFig. 6g). We, therefore, performed BTG1/2and JUNloss-of-function
experiments (Fig. 5j,k and Extended Data Fig. 7j), after confirming
knockdown efficiency (Extended Data Fig. 7j). Particularly BTG1
knockdown accelerated LN-229 cell growth, measured by live-cell
and end-point imaging (Fig. 5j,k and Supplementary Video 2). Fur-
thermore, vortioxetine treatment after gene silencing revealed that
BTGIknockdown attenuated vortioxetine’s anti-glioblastoma efficacy
(Fig.5k). Thus, vortioxetine engages an anti-proliferative program that
includes AP-1/BTG-driven tumor suppression (Fig. 51).

Robust AP-1induction across molecular regulatory layers

To profile the molecular response to vortioxetine, we performed deep
transcriptomic, proteomic and phosphoproteomic profiling at 3-6
timepoints in LN-229 cells (Extended Data Fig. 8a-f). Rapid NH-2 ter-
minal JUN phosphorylation after vortioxetine treatment was central
toseveral differentially phosphorylated pathways, including the stress
response pathway, mRNA processing and clathrin-mediated endocy-
tosis (Extended Data Fig. 8f). Consistently, several AP-1TFs, BTGl and
associated pathways, including MAPK signaling, ER stress and DNA
damage response, were upregulated at both the RNA and protein level
across all timepoints (Extended Data Fig. 8a,c,e). Conversely, vorti-
oxetine treatment downregulated oncogenic RTKs, including EGFR,
NTRK2 and PDGFRA (Extended Data Fig. 8a).

Next, we performed scRNA-seq on patient cells after 3 h of ex vivo
vortioxetine or DMSO treatment, revealing four cell clusters acrossthe
1,736 single-cell transcriptomes (patient P024; Fig. 6a,b and Extended
DataFig.9a,b). Clusters1-3 represented glioblastoma cells expressing
Nestin, Ki67, EGFR and VEGFA, with cluster 1 showing the most aggres-
sive signature and highestinferred fraction of cellsinthe G2M cell cycle
phase (Extended Data Fig. 9c). Analyzing the transcriptional response
tovortioxetine treatment revealed areduction ofinferred G2M phase
cells (Extended Data Fig. 9¢) and confirmed glioblastoma-specific
induction of AP-1TFs and effector genes in patient cells (Fig. 6b).

Profiling the vortioxetine response at the AP-1protein level across
patient samples revealed that the patient response heterogeneity
correlated with the degree of AP-1upregulation (across c-FOS, JUND,

ATF4 and the AP-1 effector HOMERI; Fig. 6¢,d). Consistent with the
scRNA-seq analysis, AP-1induction was specific for glioblastomacells,
whereasimmune cells did not exhibit AP-linduction and showed lower
baseline AP-1expression (Extended Data Fig. 9d). Thus, this single-cell
analysis across patientsidentified AP-linduction as a predictor of vor-
tioxetine efficacy and validated the glioblastoma-specific therapeutic
convergence of NADs on AP-1/BTG-driven tumor suppression across
modalities and patient heterogeneity.

Anti-depressant vortioxetine is the strongest preclinical
candidate

Finally, to evaluate the in vivo anti-glioblastoma efficacy of our top
NADs, we tested PCY-hit NADs spanning different drug classes in two
distinct orthotopic human xenograft glioblastoma mouse models (LN-
229 and ZH-161) across four independent preclinical trials (Trials I-1V;
Fig. 6e-h and Extended Data Fig. 10a,b). Standard-of-care TMZ was
included as positive control, and PCY-negative NADs paliperidone or
citalopramand vehicle were negative controls. Treatment doses were
determined a prioribased on literature and clinical evidence.

Vortioxetine was consistently the most effective PCY-hit NAD
in vivo (in 4/4 trials), showing significant survival benefit, similar to
TMZ (Fig. 6¢,f). Furthermore, vortioxetine treatment significantly
reduced tumor size in vivo measured by magnetic resonance imag-
ing (MRI) of ZH-161 transplanted mice after 15 d (Trial II; Extended
Data Fig. 10a,b), and vortioxetine displayed multifaceted anti-tumor
effectsin vitro:it reduced glioblastomagrowth, invasiveness and clo-
nogenic survival across 2D and 3D glioblastoma cell lines (Extended
DataFig.10c-f). Brexpiprazole was the second-best PCY-hit NAD in vivo
(in2/3trials), and other NADs conferred significant survival benefitin
single trials (Fig. 6e). Consistent with our ex vivo PCY results, the nega-
tive controls paliperidone (in 2/2 trials; Fig. 6e) and citalopram (single
trial; Fig. 6f) showed no survival benefit. The confirmed lack of efficacy
of anti-depressant citalopram, in particular, highlights that serotonin
modulation alone does not confer anti-glioblastoma efficacy (Trial IV;
Fig. 6f).Inthis direct dose comparison, only vortioxetine lowered Ki67
levelsinsitu, reduced tumor burdenand increased survival (Fig. 6f-h
and Extended DataFig.10g,h).

The striking consistency of our patient ex vivo and mouse in vivo
results demonstrates strong translatability of PCY-based NAD dis-
covery and confirms vortioxetine as the most promising clinical
candidate. To prepare its clinical translation, we further tested the
combination of vortioxetine with either first-line or second-line
standard-of-care chemotherapies for glioblastoma, TMZ and lomus-
tine (CCNU) in vivo (Trial V: ZH-161; Fig. 6i). All three single agents
significantly prolonged survival, with vortioxetine results now con-
firmed in five out of five in vivo trials (Fig. 6e,f,i). Compared to TMZ
or CCNU single agents, the combination of vortioxetine with either

Fig. 5| NADs alter glioblastoma neurophysiology and engage an anti-
proliferative AP-1/BTG GRN. a, Workflow for DRUG-seq* of drug-treated LN-229
cells. b, Transcriptional response of PCY-hit NAD-treated cells compared to NEG-
treated cells (6 h; asin a). Significant genes by two-tailed Wald test (DESeq2) in
light gray or colored according to their gene annotations (see legend).

¢, TFBS enrichment analysis of significantly upregulated genes inb. Circles, TF
annotations. d, log,(fold change) of AP-1TF and BTG family gene expression
(columns) significantly upregulated by 6-h PCY-hit NAD (rows) treatment
compared to NEG. e, Calcium response (AF/F,; y axis) over time (x axis) of LN-229
cellsupon drug treatment. Timeline depicts FLIPR assay setup. Representative
traces showing AF/F,, change in fluorescence intensity relative to baseline for
NAD (left) and ONCD (right) drug conditions. f, Fold change in extracellular
calciuminflux upon drug treatment relative to DMSO measured asine (n=8
assay plates; n =17 conditions; n =18-30 wells per drug; DMSO, n = 47 wells).
Asterisks in parentheses, median [Ca*' fold change] < 0. Black line, median value.
g, Single-cell-resolved calcium response (AF/F,) measured by ratiometric Fura-2
imaging over time at baseline (BASE) and after vortioxetine treatment (+VORT;
20 puM) across six cell lines (n = 3,561 cells; see also Extended Data Fig. 7c-f).

Panels depict single-cell calcium responses (rows) over time (columns), stratified
by the presence (W) or absence (@) of calcium oscillations at baseline and VORT
treatment. Representative single-cell traces (n = 4 per heatmap) are depicted
below. h, Percent of cells displaying calcium oscillations (x axis) at baseline

(gray) and after VORT treatment (purple) across cell lines (y axis; n = 6). Dots,
independent experiments (n = 4-6 experiments per line). Paired two-tailed ¢-test.
i, BTG1/2 transcriptional regulation (PathwayNet**). Black nodes, query genes;
gray nodes, top 13 inferred TF interactions. Edge colors, relationship confidence.
Jj,LN-229 confluency by live-cell imaging (y axis) over time (x axis) after gene
knockdown. Mean (line) and standard deviation (bands) of n = 4 replicate wells
are shown. k, LN-229 cell counts (y axis) after gene knockdown (columns) at
baseline (left) and vortioxetine treatment (10 pM; right; n = 9-14 replicate wells
per condition, n =2 experiments). Normalized to FLUC at baseline. a,e,f, Drug
abbreviations arein Supplementary Table 2. f k, Two-tailed ¢-test. Pvalues were
adjusted for multiple comparisons by Holm correction. I, Summary diagram by
which NADs target glioblastoma. CRE, cAMP response element; CKI, cyclin-
dependent kinase inhibitor; FKH, forkhead binding motif. Box plots asin Fig. 1b.
NS, not significant; PCY-HIT, PCY-hit; PCY-NEG, PCY-negative.
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drug provided a further median survival increase of 20-30%, with
four out of 12 mice (25%) displaying long-term survival (Fig. 6i). The
added survival benefit conferred by these neuro/chemo combination
therapies supports the mechanistic complementarity of neuroac-
tive AP-1/BTG tumor suppression with the current standard of care

targeting genome integrity. Lastly, we identified that patients with
lowKi67 levels and absence of EGFR alterations were the least likely to
benefit from vortioxetine treatment ex vivo (Extended Data Fig.10i),
offering a patient stratification strategy for this strong preclinical
candidate (Fig. 6j).
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Discussion

Here we present a therapeutic single-cell map across patient samples
that reveals the molecular NAD landscape of glioblastoma. Driving this
discoveryis the high-throughput functional evaluation of glioblastoma
tissue shortly after surgery across heterogeneous patient cohorts by
PCY.Inline with the prior successful use of PCY to guide patient treat-
ment for blood cancers and growing community efforts in functional
precisiononcology*>***%%% our resultsindicate the feasibility of using
PCY asadrugdiscovery and personalized treatment selection platform
for hard-to-treat solid tumors.

Our prospective ex vivo testing of repurposable drugs expands
theinvestigation of NADs”’, patient-derived explants**%3%0-¢2and
molecular predictors of response to accelerate clinical translation
of therapeutic candidates for glioblastoma. Near real-time drug
testing further addresses limitations of retrospective cohort stud-
ies examining coincidental NAD use, which can be confounded by
the time of prescription and grouping of multiple drugs. Expansion
to larger cohorts and consideration of other important aspects of
glioblastoma etiology, including the metabolic state**®, spatial
tumor organization®*® and the neuron-glioma interface'®* >, will
further consolidate our understanding of patient heterogeneity and
treatment response.

Despite many possible neural vulnerabilities, our interpretable
machinelearning (COSTAR) identified aconvergent drug-target con-
nectivity signature predictive of anti-glioblastoma efficacy across
drugs. COSTAR effectively applies Occam’s razor to the collective
biochemical drug-protein-protein interaction network, offering a
conceptual framework likely applicable to other cancers and drug
discovery efforts. Using COSTAR, deep multi-omic profiling and func-
tional genetics, we uncovered NAD-specific convergence through AP-1
activity on BTG-mediated tumor suppression. However, the chemical
properties leading to AP-1 upregulation remain to be identified, and
polypharmacological mechanismslikely contribute to the integrated
effect of individual NADs.

Previous studies demonstrated the role of neuronal input in regu-
lating glioblastoma growth at the brain-tumor interface, highlighting
the influence of the TME in modulating the neural behavior of the
tumor’®?°2*% _In the present study, we uncovered a tumor-intrinsic
neural vulnerability in glioblastoma, offering a therapeutic win-
dow that enables direct targeting of tumor neurophysiology inde-
pendent of neuronal input. In cancers, AP-1 factors were initially
discovered as oncogenes, although anincreasing number of studies
report context-dependent anti-oncogenic functions of AP-1 fac-
tors. In contrast, for neurons and other neural lineage cells, IEG
expression of AP-1 factors is typically a hallmark of neural activity
orinsulg*#+4°,

In the context of glioblastoma cells, we now report that diverse
NADs—particularly the anti-depressant vortioxetine—target this neu-
ral activity-like signaling, triggering a strong neurophysiological and
transcriptional response that leads to rapid glioblastoma cell death.
Vortioxetine’s potency was orthogonally demonstrated across
modalities, with an on-target ex vivo efficacy observed in 75% of
patients (Fig. 6j). Moving forward, vortioxetine in combination with
standard-of-care chemotherapeutics should be tested in controlled
clinical trials, potentially guided by molecular or functional patient
stratification. Treating glioblastoma tailored to the cellular history
and lineage of the cancer, inaddition toits unstably transformed state,
offers hope for this devastating disease.
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Methods

Patient sample processing

Ethics statement and patient cohort. Adult patients with IDH-wildtype
glioblastoma and CNS World Health Organization (WHO) grade 4
according to the 2021 WHO classification of CNS tumors treated
either at the University Hospital of Zurich or the Cantonal Hospital
St. Gallen provided informed consent to take part in the study with
approval by the institutional review board (ethical approval number
KEK-StV-Nr.19/08; BASEC numbers2019-02027 and 2021-00652). There
was no limit on tumor size for the human samplesincludedin the study
and no selection bias of the enrolled patients. Clinical characteristics
ofthe prospective and retrospective patient cohorts, including clinical
parameters, experimentinclusion, sex, age and genetics summary, can
befoundinSupplementary Table1and Supplementary Datal. The pro-
spective cohort consists of patients where fresh tissue was processed
directly within 4 h after surgery (n =27 patients for drug screening
and an additional n =17 patients for validation experiments). For PFS
analysis of the prospective cohort, only patients with newly diagnosed
glioblastomawhoreceived radiotherapy and TMZ chemotherapy were
included. Theretrospective cohort (n =18 patients) consists of patients
for whom bio-banked tissue was available and who received mainte-
nance TMZ, with OS documented as a clinical endpoint. Retrospective
samples were selected to cover abroad spectrum of PFS outcomes and
were further selected based on quality control measures, including cell
viability, cellnumber and the amount of debris present in the sample.

Patient sample dissociation for ex vivo drug screening. Surgically
removed tissue samples were first washed with PBS and cut using
single-use sterile scalpels. Subsequent dissociation was performed
inreduced serum media (DMEM media, no. 41966, with 2% FBS no.
10270106, 1% pen-strep no.15140122 and 25 mM HEPES n0.15630056,
all from Gibco) supplemented with Collagenase IV (1 mg ml™) and
DNasel (0.1 mg ml™) using a gentle MACS Octo Dissociator (Miltenyi
Biotec,130-096-427) for maximally 40 min. Homogenates were filtered
througha70-pm cell strainer (Sigma-Aldrich, CLS431751) and washed
once with PBS containing 2 mM EDTA. Myelin and debris removal was
performed by a gradient centrifugation of the cell suspensionina
7:3 mix of PBS:Percoll (Sigma-Aldrich, P4937), with an additional PBS
wash. In case the cell pellet visibly contained a notable portion of red
blood cells (RBCs), RBC lysis was performed with 1x RBC lysis buffer
(BioLegend, 420301) at room temperature for 10 min before the PBS
wash. Subsequently, cells were resuspended inreduced serum media,
filtered once more through a 70-pm cell strainer and counted using a
Countess Il Automated Cell Counter (Invitrogen). In case sufficient
cellnumbers remained after cell seeding for ex vivo drug testing, cells
were cryopreserved in10% DMSO-containing cryopreservation media
and/or cultured in DMEM mediasupplemented with 10% FBS, 1% pen—
strep and 25 mM HEPES to obtain PDCs shortly maintained for a few
passages as adherent cultures.

Cell culture

The adherent human glioblastoma cell lines LN-229 (American Type
Culture Collection, CRL-2611, directly purchased from the vendor),
LN-308 (obtained from the University Hospital of Zurich) and PDCs
(patient IDs denoted with a“.C’) were cultured in standard serum media
(DMEM media, no.41966, with10% FBS no.10270106, 1% pen-strep no.
15140122 and 25 mM HEPES no. 15630056, all from Gibco). Adherent
cell lines and PDCs were passaged using trypsin-EDTA (0.25%, Gibco,
25200056), with PDCs shortly maintained for a few passages after
surgical dissociation. The spheroid human glioblastoma-initiating
celllinesZH-161and ZH-562 were generated at the University Hospital
of Zurichand cultured in Neurobasal (NB) medium (Gibco, 21103049)
supplemented with B27 (Gibco, 17504044), 20 ng ml™ b-FGF (Pepro-
Tech, AF-100-18B), 20 ng mI™ EGF (PeproTech, AF-100-15) and 2 mM
L-glutamine (Gibco, 25030081). Suspension spheroid cultures were

passaged using Accutase (STEMCELL Technologies, 07920). Cell lines
LN-308, ZH-161and ZH-562 were authenticated at the LeibnizInstitute
DSMZ by shorttandem repeat (STR) DNA analysis, whereas LN-229 was
notauthenticated asit wasbought directly fromthe vendor. The LN-229
lineis derived from afemale patient,and LN-308, ZH-161and ZH-562 are
derived from male patients. LN-229 and LN-308 lines have methylated
MGMT promoters. The LN-229 line is commercially available, and other
glioblastoma cell lines/PDCs are obtainable from either the University
Hospital of Zurich or the Snijder laboratory with the exception of the
P022.Cline that was not able to be expanded beyond five passages. All
cell cultures were maintained at 37 °C, 5% CO, in a humidified incubator.

PCY (drug testing, immunocytochemistry, confocal
microscopy and image analysis)

The PCY method refers to high-content image-based ex vivo drug
testing, including the following steps of cell seeding, drug testing,
immunocytochemistry, confocal microscopy, image analysis and PCY
score calculation for each tested drug®*.

Cell seeding and drug testing. Freshly dissociated cells were seeded
into CellCarrier 384 Ultra microplates (PerkinElmer, 6057300) typi-
cally within4 h of surgery with 0.5-1.5 x 10* cells per well. For cultured
glioblastoma cell lines and PDCs, trypsinized (adherent cultures) or
accutase-treated (spheroid cultures) cells were seeded at 0.5-2.5 x 10*
cells per well in 384-well plates. Before cell seeding, drugs were
re-suspended as 5 mM stock solutions and dispensed into 384-well
plates using an Echo 550 liquid handler (Labcyte) in a randomized
platelayout to control for plate effects. Detailed information regarding
drugs used in this study can be found in Supplementary Table 2. Dif-
ferent druglibrariesincluded glioblastoma drugs (GSDs, n = 3 drugs),
ONCDs (n =65 drugs) and NADs (n = 67 drugs). The NAD library was
based on purchasable drugs from the vendor (Sigma-Aldrich) of n =119
CNS marketed drugs cited in Wager et al.*® and a curated list of n=35
FDA-approved drugs for CNSindications between 2010 and 2018 after
Wager et al.*® was published. All NADs were tested at 20 pM, and, for
select NADs, a concentration range of 0.1-100 pM was tested (Extended
Data Fig. 3a-d). GSDs were tested at the following concentrations:
TMZ (first-line glioblastoma chemotherapy; 50,100, 250 and 500 puM)
and CCNU and carmustine (BCNU) (second-line glioblastoma chemo-
therapies; 10, 50,100 and 250 puM). All ONCDs were tested at 10 uM
concentrations. Drug plates included the following number of replicate
wells per drug/concentration: GSD plate, drug, n =3 wells, DMSO, n=16
wells; NAD plate, drug, n = 4 wells, DMSO, n =16-24 wells; ONCD plate,
drug, n=4wells, DMSO, n =16 wells. Cells were incubated for 48 hwith
drugs in reduced serum media at 37 °C, 5% CO, before proceeding to
cell fixation.

Immunocytochemistry. Cells were fixed with 4% paraformaldehyde
(PFA) (Sigma-Aldrich, F8775) in PBS and blocked in 5% FBS and 0.1%
Triton containing PBS. For characterization of cellular composition,
cells were stained overnight at 4 °Cinblocking solution with the follow-
ing antibodies and dilutions: Alexa Fluor 488 anti-S100 beta (1:1,000,
Abcam, ab196442, clone EP1576Y), PE anti-Nestin (1:150, BioLegend,
656806, clone 10C2), Alexa Fluor 488 anti-CD3 (1:300, BioLegend,
300415, clone UCHT1), Alexa Fluor 647 anti-CD45 (1:300, BioLegend,
368538, clone 2D1) and DAPI (1:1,000, BioLegend, 422801, stock solu-
tion10 mg mlI™). Due to the temporary manufacturer discontinuation
of the Alexa Fluor 488 anti-S100 beta antibody, from patient sample
P030 and onwards, samples were stained with either a self-conjugated
Alexa Fluor 488 anti-S100 beta antibody, where Alexa Fluor 488 NHS
Ester (Thermo Fisher Scientific, A20000) was conjugated to the
anti-S100 beta antibody (Abcam, ab215989, clone EP1576Y), or the
following antibody panel where the 488 and 555 channel markers were
swapped: Alexa Fluor 488 anti-Nestin (1:150, BioLegend, 656812, clone
10C2), Alexa Fluor 555 anti-S100 beta (1:1,000, Abcam, ab274881, clone
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EP1576Y), PE anti-CD3 (1:300, BioLegend, 300441, clone UCHT1) and
AlexaFluor 647 anti-CD45 (1:300, BioLegend, 368538, clone 2D1).

Other conjugated antibodies used included Alexa Fluor 647
anti-tubulin beta 3 (1:1,000, BioLegend, 657406, clone AA10); Alexa
Fluor 488 anti-vimentin (1:500, BioLegend, 677809, clone 091D3);
Alexa Fluor 555 anti-cleaved caspase-3 (1:500, Cell Signaling Technol-
ogy, 9604S); Alexa Fluor 546 anti-HOMER (1:300, Santa Cruz Bio-
technology, sc-17842 AF546, clone D-3); PE anti-CFOS (1:300, Cell
Signaling Technology, 14609S, clone 9F6); FITC anti-ATF4 (1:300,
Abcam, ab225332); Alexa Fluor 488 anti-JUND (1:300, Santa Cruz Bio-
technology, sc-271938 AF488, clone D-9); and Alexa Fluor 594 anti-CD45
(1:300, BioLegend, 368520, clone 2D1). Other unconjugated antibod-
iesused included anti-Connexin43 (1:500, Cell Signaling Technology,
83649T); anti-EGFR (1:300, Abcam, ab98133); anti-Nestin (1:150, Bio-
Legend, 656802, clone 10C2); anti-S100 beta antibody (1:300, Abcam,
ab215989, clone EP1576Y); and anti-Ki67 (1:300, Cell Signaling Technol-
ogy, 9129S, clone D3B5). For unconjugated primary antibodies, the fol-
lowing secondary antibodies were used: donkey anti-sheep IgG (H + L)
cross-adsorbed secondary antibody, Alexa Fluor 488 (Thermo Fisher
Scientific, A11015); goat anti-mouse IgG (H + L) highly cross-adsorbed
secondary antibody, Alexa Fluor Plus 555 (Thermo Fisher Scientific,
A32727); and goat anti-rabbit IgG (H + L) highly cross-adsorbed second-
ary antibody, Alexa Fluor Plus 647 (Thermo Fisher Scientific, A32733).
Allsecondary antibodies were used at 1:500 dilution.

Confocal imaging and image analysis. Imaging of 384-well plates
was performed with an Opera Phenix automated spinning-disk con-
focal microscope (PerkinElmer, HH14000000) at x20 magnification
for all assays with the exception of spheroid cell lines (ZH-161 and
ZH-562) imaged at x10 magnification. Select images were imaged
at x40 for visualization. Single cells were segmented based on their
nuclei (DAPI channel) using open-source CellProfiler 2.2.0, and nuclear
expansion was performed to assess cytoplasmic features, including
marker expression. Downstream image analysis was performed with
MATLAB R2019a-R2020a. Fractions of marker-positive cells for each
sample and drug condition were based onlocal background-corrected
intensity histograms across the whole drug plate. In patient samples,
marker-positive populations were defined as follows: glioblastoma
cells ((Nestin® or SIO0B*) and CD457), immune cells (CD45" and
S100B"Nestin") and other marker-negative cells (SI00B"Nestin"CD45").
Marker-positive fractions were averaged across each well/drug.

PCY score calculation. The PCY score quantifies the drug-induced
relative reduction of any marker-defined cell population by measur-
ing the change of a defined target population upon drug treatment
compared to DMSO vehicle control. In patient samples, the PCY score
is calculated based on the fraction of ((Nestin" or SI00B*) and CD45"
cells) out of all cells. In PDC lines, the score is based on (Nestin®) cells
out of all cells. By all cells, we refer to any detected cell with a DAPI*
nucleus. PCY scores are averaged across technical replicates for each
drug or control condition.

PCY score =1 —{[TPpryc] = [TPpmso]}

where TPy = fraction of the target population in a given DRUG con-
dition of all cells and TPy, = fraction of the target population in the
DMSO control condition of all cells.

A positive PCY score of 1 represents the strongest possible
‘on-target’ response; a PCY score of 0 indicates no effect/equal cyto-
toxicity; and anegative PCY score indicates higher toxicity to other cell
populations other than the defined target population. In cases where
atarget populationis not defined, drug response and cell viability are
measured as total cell number reduction in LN-229 and LN-308 lines
and a reduction of 2D projected total spheroid area in ZH-161 and
ZH-562lines.

Deep learning of apoptotic cell morphologies. To generate atraining
dataset, cleaved CASP3"" cells identified by IF and CellProfiler-based
image analysis (n = 6 patient samples) were cropped as five-channel
50 x 50 pixelimages around the nuclear centroid of each cell. In total,
6,072 single-cellimage crops were manually curated and labeled as two
classes (CASP3*") based on their cleaved CASP3 staining. A convolu-
tional neural network (CNN) with a modified AlexNet architecture®’
with the image input size set as 50 x 50 x 2 (two-channel bright-field
(BF) and DAPI classifier) and the number of output classes set to 2
(CASP3*") was then trained on this manually curated image dataset
(n= 6,072 single-cell images; split by a 8:2 ratio into training and test
data, respectively). CNN trainingincluded use of the Adam optimizer,
with a mini-batch size of 64 and a maximum number of 30 epochs.
The initial learning rate was set to 0.01 with a piece-wise learning rate
schedule and a drop factor of 0.1 every 10 epochs. Network perfor-
mance on a manually curated test image dataset (n =1,214 single-cell
crops) isshown as a confusion matrix in Extended Data Fig. 1j. Al DAPI*
nuclei detected in patient samples were retrospectively classified by
this apoptotic classifier CNN based on the BF and DAPI channels to
quantify apoptotic fractions across the prospective patient cohort,
marker-based subpopulations and drug conditions. Cells were clas-
sified as apoptotic (CASP3") based on a CNN confidence threshold of
87%, close to the true-positive rate of the classifier.

Demonstration of PCY score robustness to apoptotic cells. We
performed ex vivo NAD (n = 67 drugs) screens in two patient samples
(P048 and P049) by staining for cleaved CASP3. The drug response
(Extended DataFig. 2i-k) shows excellent reproducibility, both when
comparing the original PCY scores with the PCY scores obtained after
excluding CASP3’ cells by IF as well aswhen comparing the PCY scores
after excluding CASP3" cells defined either by IF or by the CNN apop-
totic classifier. We also re-calculated the PCY scores by excluding the
CNN-classified apoptotic cells measured across all 27 patient samples
and 67 NADs and compared them to the original PCY scores reportedin
the manuscript (Extended Data Fig. 2k). The drug response correlation
withor without the inclusion of apoptotic cells was 0.988, demonstrat-
ing that the PCY score is highly robust to the presence of apoptotic
cells (Extended Data Fig. 2k) and can be expected to be equally robust
to other forms of cell death.

Targeted next-generation sequencing (Oncomine
Comprehensive Assay)

Formalin-fixed paraffin-embedded (FFPE) tissue blocks from
patient-matched samples collected from the University Hospital of
Zurich were used to determine genetic alterations. Tumor areas were
marked on the hematoxylin and eosin (H&E) slide, and relative tumor
content was estimated by a trained pathologist. One to three core
cylinders (0.6-mm diameter) from the FFPE blocks (tumor areas) were
used for DNA and RNA isolation. DNA was isolated with a Maxwell 16
FFPE Tissue LEV DNA Purification Kit (Promega, AS1130). DNA con-
centration was determined using a Qubit dsDNA HS Assay Kit. RNA
was extracted with a Maxwell 16 FFPE Tissue LEV RNA Purification Kit
(Promega, AS1260) after pre-treatment with DNasel for 15 minatroom
temperature. Library preparation with 20 ng of DNA or RNA input was
conducted using Oncomine Comprehensive Assay version 3. Adap-
tor/barcode ligation, purification and equilibration were automated
with Tecan Liquid Handler (EVO-100). Next-generation sequencing
(NGS) libraries were templated using lon Chef and sequenced onan S5
(ThermoFisher Scientific), and data were analyzed using lon Reporter
software 5.14 with Applied Filter Chain: Oncomine Variants (5.14) set-
tings and Annotation Set: Oncomine Comprehensive Assay version 3
Annotations version1.4. For NGS data analysis, Torrent Suite software
(Ion Reporter) was used, enabling detection of small nucleic variants
(SNVs), copy number variations (CNVs), gene fusions and indels from
161 unique cancer driver genes.
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Detected sequence variants were evaluated for their pathogenicity
based on previous literature and the ClinVar database®®. Gene altera-
tions described as (likely) benign were not included in the results.
Non-pathogenic mutations harboring a minor allele frequency higher
than 0.01 were not selected. The Default Fusion View parameter was
selected. For the CNV confidence range, the default filter was used to
detect gains and losses using a 5% confidence interval (CI) for minimum
ploidy gain over the expected value and 95% Cl for minimum ploidy loss
under the expected value. CNV low-confidence range was defined for
gain by copy number from 4 to 6 (minimum CNV CI 5%: 2.9) and loss
from 0.5to1(maximum CNV C195%:2.43). High-confidence range was
defined by gain up to 6 copy number (minimum CNV CI 5%: 4.54) and
loss below 0.5 copy number (maximum CNV C195%:1.37). The 5% and
95% Cls of allselectedlossand gainare availablein Supplementary Datal.
The minimum number of tiles required was 8. Results are reported as
detected copy number.

scRNA-seq and re-analysis of other published datasets
Cryopreserved patient samples were thawed and used for scRNA-seq.
Viability markers SYTOX Blue (1 pM, Thermo Fisher Scientific, S11348)
and DRAQS (1 puM, BioLegend, 424101) were added to the cell suspen-
sion atleast15 min before sorting. Fluorescence-activated cell sorting
(FACS) gates were set based on CD45 (Alexa Fluor 594 anti-CD45,1:20,
BioLegend, 368520, clone 2D1) and SYTOX Blue/DRAQS5 intensities to
sort viable CD45" and CD45™ populations (Extended Data Fig. 1a) into
DNA LoBind Eppendorftubes (VWR, 525-0130) using the BD FACSAria
Fusion Cell Sorter and FlowJo 10.4.2 software. CD45™ and CD45" cells
were mixed at 2:1to 10:1ratios depending on availability to enrich for
glioblastoma cells. Single-cell transcriptomes from four patient sam-
ples (P0O07, PO11, PO12 and PO13), part of the prospective cohort, are
referred to as ‘Lee et al.; this study’. For patient sample P024 that was
used to measure the effect of vortioxetine drug treatment, cells sorted
by FACS were incubated for 3 h with or without 20 pM vortioxetine
before proceeding to library preparation. Libraries were generated
using Chromium Next GEM Single Cell 3’ version 3.0 and version 3.1
kits (10x Genomics) and sequenced on a NovaSeq 6000 (Illumina).
Read alignment to the GRCh38 human reference genome, generation
of feature-barcode matrices and aggregation of multiple samples
were performed using the Cell Ranger analysis pipeline (10x Genom-
ics, versions 3.0.1 and 6.1.1). Four patient samples were processed in
November 2019 with the earlier version of 10x Genomics library prep
kitsand Cell Ranger analysis pipeline, whereas the later sample (P024)
was processed in September 2021.

Analysis of the cohort-matched in-house scRNA-seq dataset.
Quality control for the in-house dataset (Lee et al.) was performed by
analyzing only high-quality cells with less than 10% of mitochondrial
transcripts and genes that had atleastacountof2inatleast threecells.
Forthe Lee et al. dataset, an expression threshold of log,(count+1) >3
was applied to consider agene expressed in agiven cell. Uniform mani-
fold approximation and projection (UMAP) clusters in Extended Data
Fig. 1c are based on Leiden community detection, and cell types are
assigned by marker expression. Glioblastoma clusters are numbered
indescending order based on cluster-averaged expression of the Gene
Ontology term ‘stem cell differentiation’ (GO:0048863).

Re-analysis of other published scRNA-seq datasets. To analyze
additional glioblastoma patient cohorts by scRNA-seq, we used two
published datasets: Neftel et al.* and Yu et al.*’. For Neftel et al., we
removed cells with fewer than 2° detected genes and/or more than
15% of mitochondrial transcripts. For Yu et al. the data were already
pre-filtered, but patient samples (7-9 and 14-15) that did not cor-
respond to glioblastoma (grade IV astrocytomas) were not included.
For both datasets, only genes that had at a count of 2 in at least two
cells were included in the analysis. For the Neftel et al. and Yu et al.

datasets, expression thresholds of log,(count+1) over 5 and 3, respec-
tively, were applied to consider a gene expressed in a given cell. For
all three scRNA-seq datasets, only patient samples with more than 50
positive cells for agiven gene were considered in Fig. 1b and Extended
DataFig.1d.

Inferred CNA analysis. CNAs were inferred using the ‘infercnv’ R
package (version 1.18.0), using the same cell type definition in Fig. 1b
and expression threshold as described above, sampling up to 70 cells
per patient and cell type. ‘infercnv’ was run on the sampled cells with
default settings with CD45" immune cells across all patients set as the
reference cell type. A cell was considered to have a detectable CNA if
the mean ‘modified expression’ across all genes on each respective
chromosome was either above a threshold of 1.1 for chromosome 7
(amplification) or below 0.9 for chromosome 10 (loss). Only patient
samples that had detectable CNAs for their respective chromosomes
in at least 5% of cells (combined across ‘Nestin* or SIO0OB* and ‘other’
cells) wereincluded inthe analysis presented in Fig. 1c.

Cell-type-specific enrichment analysis of gene modules enriched
in ‘other’ cells. To determine putative cell types represented in
Nestin"SIO0B CD45™ cells (‘other’) by scRNA-seq, we analyzed the
log,(fold change) of ‘other’ enriched genes compared to glioblas-
toma cells. First, an aggregated average ‘metacell’ for each patient
and subpopulation (either ‘other’ or glioblastoma cells) was created
by summing the counts across each [patient-subpopulation] and
dividing this by the corresponding number of cells. Next, consider-
ing only genes where the aggregate-averaged expression is above 1
in at least one ‘metacell’ type, we calculated the log,(fold change) of
[‘other’ metacell] / [glioblastoma metacell] per gene and per patient.
Manhattan distance-based clustering of the top 10 log,(fold change)
of ‘other’ enriched genes per patient is visualized in Extended Data
Fig. 1g. Dendrogram tree cutting of ‘other’ enriched genes yielded
gene modules that were analyzed by WebCSEA® to determine most
likely cell types represented by the respective gene modules. The
top seven most likely cell types representing each ‘other’ gene mod-
ule ranked by the lowest combined P values are shown in Extended
Data Fig. 1h.

Neural specificity and patient specificity score analysis. Neural
specificity and patient specificity scores for each gene were defined as
follows. Using thein-house dataset, we identified putative cell types by
unsupervised clustering using Monocle’ and annotated the clusters
as being either immune cells or neural cells based on known marker
genes. DESingle” analysis resulted in 11,571 neural-specific and 1,157
immune-specific genes (log,FC > 0.5). Using these cell-type-specific
gene sets, we calculated an immune score and a neural score for each
cell using singscore, and we classified every cell in the additional
datasets as either neural orimmune based on alinear combination of
both scores. The ‘neural specificity score’is defined as follows: [neu-
ral specificity = fraction of neural cells expressing gene - fraction of
immune cells expressing gene] where expression of a given gene in a
cellisdefined as having any non-zero count. This score ranges from -1
(geneis expressed in allimmune cells and no neural cells) to +1 (gene
is expressed in all neural cells and no immune cells). For genes with
low expression, this score will be close to O, reflecting the fact that
clear statements cannot be made about cell type specificity for these
genes. To assess the variation of gene expression across patients, we
defined a“patient specificity score’as follows. First, for every gene giand
every patient pj, we calculated a cell type composition independent
fraction of cells expressing gene gi as [Fraction_expressing ij=fraction_
expressing immune_ij + fraction_expressing neural_ijl. We then defined
patient specificity as the median absolute deviation (MAD) of fraction_
expressing across all patients, thus defining [Patient specificity i =
mad(Fraction_expressing i,.)].
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siRNA knockdown and quantitative real-time PCR
All siRNAs used in the study were part of the MISSION esiRNA library
(Sigma-Aldrich, EuphoriaBiotech; Supplementary Table 4) and ordered
ascustomgene arrays (esiOPEN and esiFLEX). FLUC esiRNA (EHUFLUC)
targeting firefly luciferase was used as a negative control, and KIF11
esiRNA (EHU019931) was used as a positive control for transfection and
viability. siRNAs were transfected at 10 ng per well in 384-well plates
(used for imaging and drug incubation) and 40 ng per well in 96-well
plates (RNA extraction, quantitative real-time PCR (qQRT-PCR)) with
Lipofectamine RNAIMAX (Invitrogen, 13778075). For 384-well plates,
both siRNAs and Lipofectamine were dispensed using a Labcyte Echo
liquid handlerinarandomized plate layout to control for plate effects
whenpossible. For data presented in Figs. 3d and 5i and Extended Data
Figs. 4d and 7j, LN-229 cells were incubated at 37 °C, 5% CO, for 48 h
after siRNA transfection before fixation, IF and RNA extraction. For
Fig. 5k, after 48 h of siRNA transfection, LN-229 cells were incubated
foranadditional 24 hwith either DMSO control or vortioxetine (10 uM)
before fixing and subsequent analysis.

siRNA knockdown efficiency and relative abundance for the genes
BTG1, BTG2, JUN and MKI67 were measured by TagMan Array 96-well
plates (Applied Biosystems) using TagMan Fast Advanced Master Mix
(Thermo Fisher Scientific, A44360) on a QuantStudio 3 Real-Time PCR
System (Applied Biosystems, A28567). Total RNA from LN-229 cells was
extracted using the Direct-zol RNA MicroPrep Kit (Zymo Research,
R2062) and measured using a Qubit 4 fluorometer (Thermo Fisher
Scientific). cDNA was synthesized with an iScript cDNA Synthesis Kit
(Bio-Rad, 1708890). For each TagMan biological replicate assay (n =3
replicates), 25 ng of cDNA per sample was used. To calculate the rela-
tive abundance of each target gene, the geometric mean Ct value of
four endogenous control genes (I18S rRNA, GAPDH, HPRT and GUSB)
was subtracted from each [sample-target gene] Ct value to derive the
deltaCt (dCt) value.

COSTAR

COSTAR is an interpretable molecular machine learning approach
that uses logistic LASSO regression in a cross-validation setting to
learn a multi-linear model that identifies the minimal set of drug-
target connections that maximally discriminates PCY-hit drugs from
PCY-negative drugs.

Drug-target connections were retrieved from the DTC*. DTC is
a crowd-sourced platform that integrates drug-target bioactivities
curated from both literature and public databases, such as PubChem
and ChEMBL. Drug-target annotations (DTC bioactivities) listed as of
August 2020 were included, with the target organism limited to Homo
sapiens. Among PCY-tested drugs in our NAD and ONCD libraries, 127
out of132 drugs had DTC ‘bioactivity’ annotations. PTGs with biochemi-
cal associations to a given drug correspond to bioactivities with the
inhibitory constant ‘KI’ as the ‘End Point Standard Type’. ePTGs include
all annotated drug bioactivities. STGs downstream of ePTGs were
retrieved by high-confidence protein-proteininteractions annotated
inthe STRING database (interactionscore > 0.6). The final drug-target
connectivity map that was used for COSTAR consisted of 127 PCY-tested
drugs, 975 extended primary targets, 10,573 secondary targets and
114,517 network edges. The 127 drugs were labeled either as PCY-hits
(n=30, equallysplitacross NADs and ONCDs) or as PCY-negative drugs
(n=97) based on the ranked mean PCY score across patients.

A 20-fold cross-validated LASSO generalized linear model was
trained in MATLAB with the drug-target connectivity map as the pre-
dictor variable and PCY-hit status (hit versus negative) as the binomially
distributed response variable to identify the optimal regularization
coefficient (lambda) across ageometric sequence of 60 possible values.
Final model coefficients were fitted using the lamba value correspond-
ing to the minimum deviance in a cross-validation setting (Extended
DataFig. 5a). COSTAR performance was first evaluated on the training
dataset, represented as a confusion matrix in Fig. 4d. Using this trained

linear model, COSTAR was next used as aninsilico drug screening tool
to predict the PCY-hit probability (COSTAR score) based on the con-
nectivity 0f 1,120,823 compounds annotated in DTC (Supplementary
Data 2). For interpretability, COSTAR subscores, defined as the indi-
vidual connectivity to target genes multiplied by their respective coef-
ficients (betas) in the linear model, can be investigated in Fig. 4h and
Extended Data Fig. 5c. COSTAR predictions from this in silico screen
were further experimentally validated ex vivo by PCY inglioblastoma
patient samples (n=4) on a set of untested drugs predicted as either
COSTAR-HIT (n=23) or COSTAR-NEG (n = 25).

DRUG-seq

High-throughput multiplexed RNA-seq was performed with the
DRUG-seq method as described in Ye et al.** with a few modifications.
Oligonucleotides used for DRUG-seq are listed in Supplementary
Table 5. Modifications to the published method are the following: (1)
extraction of RNA before cDNA reverse transcription with the Zymo
Direct-zol-96 RNA isolation kit (Zymo Research, R0256); (2) change of
reverse transcription primers for compatibility with standard Illumina
sequencing primers; (3) cDNA clean-up before library amplification
performed with the DNA Clean & Concentrator-5kit (Zymo Research,
D4013); and (4) tagmentation performed with2-nginput and sequenc-
ing library generated using the Nextera XT library prep kit (Illumina,
FC-131-1024).Inshort,1x 10*LN-229 cells were plated in CellCarrier 96
Ultramicroplates (PerkinElmer, 6055302) and incubated overnightin
reduced serum media at 37 °C, 5% CO, before drug treatment. A total
of 20 drugs (Supplementary Table 2) were profiled across two differ-
ent timepoints (6 hand 22 h; n =4 replicates per drug/timepoint).
These drugs included PCY-hit NADs spanning diverse drug classes
(n=11), PCY-hit ONCDs (n =7), PCY-negative NADs (n = 2) and DMSO.
Cells in drug-treated 96-well plates were lysed with TRIzol reagent
(Thermo Fisher Scientific, 15596018), and then subsequent cDNA
and library prep was performed as described above. Finally, 100-bp
(80:20) paired-end reads were generated using I[llumina’s NextSeq
2000 platform.

Calcium assays on the FLIPR platform

For FLIPR calcium assays, LN-229 or P050.C cells were seeded on
poly-D-lysine-coated ViewPlate-96 microplates (PerkinElmer, 6005182)
in100 plof medium (LN-229:70,000 cells per well; P050.C: 20,000 cells
perwell) 24 hbefore the experiment. Fluorescent Ca** signal was meas-
ured using the Calcium 6 assay kit (Molecular Devices, 5024048) by the
FLIPR Tetra (Molecular Devices) using a 470-495-nm LED excitation
module and a515-575-nm emission filter. Calcium 6 dye stock solution
was prepared in 10 ml of sterile-filtered nominal Ca* free (NCF) modi-
fied Krebs buffer containing 117 mM NaCl, 4.8 mM KCI, 1 mM MgCl,,
5 mMD-glucose and 10 MM HEPES (pH 7.4) stored as 500-pl aliquots at
-20 °C. Before each experiment, the dye stock was freshly diluted 1:10
in NCF Krebs buffer, and, after removing the medium from the cells,
50 plofthe diluted dye was applied per well followed by incubation at
37°Cfor2hinthedark.Fortheassay setup outlinedin Fig. 5e, cells were
treated with their respective PCY-drug after a period of equilibration
in 2 mM calcium-containing buffer. For fold change calculations pre-
sented in Fig. 5f and Extended Data Fig. 7b, normalized calcium levels
for each drug were calculated by averaging calcium levels after drug
treatment (400-600-s interval) divided by the basal level of calcium
before drug administration (200-300-s interval). In the ER Ca** store
release assay, stable baselines were established for 50 s before 50 pl of
2 uM (2x) thapsigargin (Sigma-Aldrich, T9033) or 40 pM (2x) drug solu-
tions freshly prepared in NCF Krebs buffer were robotically dispensed.
Next, the cellswere incubated, and fluorescence was monitored in the
presence of thapsigargin or drugs for another 5 min. In the extracel-
lular Ca* uptake assay, after initial recording of the baseline, 50 pl
of 4 mM CacCl, (2x) prepared in NCF Krebs buffer was dispensed onto
the cells to re-establish a physiological 2 mM calcium concentration,
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and the fluorescence was monitored for 5 min. Next, 60 uM (3x) drug
solutions freshly prepared in Krebs buffer containing 2 mM CaCl, were
robotically dispensed, and fluorescence was recorded for an additional
4 min. The raw data were extracted with ScreenWorks software version
3.2.0.14. The values represent average fluorescence level of the Calcium
6 dye measured over arbitrary selected and fixed timeframes.

Calcium imaging using the Fura-2 calciumindicator
Glioblastomacelllines (LN-229 and LN-308) and PDCs (P024.C, P040.C,
P049.C and PO50.C lines) were seeded in six-channel p-Slide VI 0.4
ibiTreat (ibidi, 80606), with30,000-100,000 cells per channel and up
tothree channels perslide. Seeded cells were cultured in these chamber
slides 1-2 d before the experiment to achieve approximately 70-80%
confluency. Before dye loading of the Fura-2 AM calcium indicator
(Thermo Fisher Scientific, F1221), cells were washed two times with
HEPES-buffered Krebs-Ringer Solution (referred to as Krebs buffer;
Thermo Fisher Scientific, 67795.K2). Cell permeant Fura-2 dye resus-
pended in DMSO was incubated with cells (1 uM solution in Krebs
buffer) for 15 min at 37 °C, 5% CO, in a dark humidified incubator and
washed three times with Krebs buffer before imaging. All subsequent
calciumimaging and drug perfusion were performed in Krebs buffer.
Live-cell calcium imaging was performed at x20 magnification
(SFluor x20 NA 0.75 objective) on a Nikon Ti2-E inverted microscope
equipped with a Nikon DS-FI3 color camera (2,880 x 2,048 pixels,
2.4 pm x 2.4 pm), color BF camera, motorized fast emission filter
wheels (Sutter Instrument) and a FURA dichroic mirror. FURA filter-
set specifications include: LED 1 (excitation window 1), 340/26; LED
2 (excitation window 2), 387/11; and an emission filter, 510/84.2 x 2
binnedimages were acquired every 2 s throughout animaging time of
10 min per experiment. CO, levels and temperature were controlled by
an Okolabbox type incubation system. Vortioxetine (20 uM solution)
was manually administered on the chamber slide. Timepoint of drug
addition was, on average, between 125 s and 140 s after the start of
imaging. Downstream image analysis was performed with ImageJ and
R.InImage], circular regions of interest (ROls) were manually selected
foreach cell presentin the firstimage frame of each experiment’s time
series as well as five background ROIs to calculate the mean back-
ground intensity. For both the 340-nm and 380-nm channels, mean
pixelintensities across each cell ROl and image frame were measured.
Subsequently in R, mean background intensity was subtracted from
each cellROI before further downstream analysis. Cell ROIs with more
than five image timeframes exhibiting a signal lower than background
(lower one percentile of Fura-2 intensities across cellsin the first 30 s of
imaging) were excluded from the analysis. Timepoint of vortioxetine
addition was determined either by outlier detection or by manual
inspection between 120 s and 150 s after the start of imaging, and this
single timeframe was assigned to N/A (not applicable) to exclude the
possibility of imaging artifacts impeding the analysis. The raw Fura-2
calciumssignal was defined as the ratio of 340/380 intensity. The mean
changein calciumsignal after vortioxtine treatment was defined as the
baseline signal before drug treatment subtracted from the calcium
signal after vortioxetine treatment, each averaged across a120-s time
window. Normalized Fura-2 calcium signal corresponds to the baseline
signal subtracted from the raw signal ona cell ROl basis. The presence
(W) or absence (@) of oscillatory calciumsignaling was determined by
peak detection analysis. If a cell ROl had more than one or two peaks
detected withinits respective time span (baseline versus after vortiox-
etine drug treatment), the response type was assigned as oscillatory.

Electrophysiology

LN-229 and LN-308 glioblastoma cell lines were seeded at approxi-
mately 40% confluence in 35-mm Petri dishes (CLS430165, Corning).
Whole-cell patch-clamp recordings were performed with a HEKA EPC10
USB amplifier using the following solutions: extracellular (inmM): 140
NacCl, 2 MgCl,, 2 CaCl,, 10 HEPES, 3 KCl, 10 D-glucose, pH 7.4; pipette

(in mM): 4 NaCl, 120 K-gluconate, 10 HEPES, 10 EGTA, 3 Mg-ATP, 0.5
CaCl,, 1MgCl,, pH7.2 (liquid junction correction12 mV). Patch pipettes
(-10 MOhm) were pulled from borosilicate glass capillaries (Harvard
Apparatus, 30-0038) using a two-step vertical pipette puller PC 100
(Narishige) and further fire-polished using a homemade microforge.
Membrane voltage was measured during 10 s (current-clamp mode),
and currents elicited upon changes in voltage (voltage-clamp mode)
were assessed by keeping cells at -50 mV for 300 ms, followed by
stepwise increments of +20 mV during1,000 ms (-120 mVto +100 mV)
and ending with =50 mV for 300 ms. Current-clamp and voltage-clamp
protocols were executed automatically every minute during the experi-
ment. Cells were kept at their respective membrane voltage (voltage
clamp) in between protocols. For every cell, a 5-min control period
was recorded after achieving whole cell followed by a 10-min record-
ing with vortioxetine, 10 pM treatment. Average steady-state current
and membrane voltage were calculated during 80% of recorded time.
Alinear mixed-effects model was fitted by: ‘Current density ~-Command
voltage (Vemd)* Condition (Cond.) + (1|Cell ID)’ to assess how command
voltage and condition influence current density. Summary statistics
arereported in Extended Data Fig. 7i.

Incucyte live-cellimaging

In total, 2.5 x 10> LN-229 cells per well were plated in CellCarrier 96
Ultra microplates (PerkinElmer, 6055302) 24 h before the experi-
mentand transfected with BTG1, BTG2and FLUC (=) MISSION esiRNAs
(Sigma-Aldrich, EuphoriaBiotech, 40 ng per well) using Lipofectamine
RNAiIMAX (Invitrogen, 13778075). Real-time confluence of cell cultures
(n=4replicate wells per condition) was monitored by imaging every2 h
for 7 dat x10 magnification with the ‘phase’ channel using the Incucyte
live-cell analysis system S3 (Sartorius). Automatic image segmenta-
tion and analysis of the phase-contrast images was performed by the
Incucyte base analysis software (version 2020B).

Timecourse RNA-seq library preparation and sequencing
LN-229 cells were seeded at 2 x 10° cells per well in six-well Nunc
Cell-Culture Treated Multidishes (Thermo Fisher Scientific, 140675)
and incubated overnight in reduced serum media at 37 °C, 5% CO,
before drug treatment. The following day, vortioxetine (AvaChem
Scientific, 3380) was manually added to each well at afinal concentra-
tion of 20 pM. At the start of the experiment, LN-229 cells that were not
treated with vortioxetine were collected as the O-htimepoint. After 3, 6,
9,12 and 24 hfollowing vortioxetine treatment, drug-containing media
were removed, and cells were collected in TRIzol reagent (Thermo
Fisher Scientific, 15596018). Total RNA was isolated using Direct-zol
RNA MicroPrep Kit (Zymo Research, R2062), and RNA quality and
quantity were determined with an Agilent 4200 TapeStation. Sample
RNA integrity number (RIN) scores ranged from 5.9 to 10 (mean RIN,
9.33). RNA input was normalized to 300-400 ng, and RNA libraries
were prepared using the lllumina TruSeq stranded mRNA library prep.
Then,100-bp single-end reads were generated using lllumina’s NovaSeq
6000 platform with an average sequencing depth of approximately
50 million reads per replicate. Reads were mapped and aligned to the
reference human genome assembly (GRCh38.p13) using STAR/2.7.8a,
and counts were extracted using ‘featureCounts’. Subsequent read
normalization (variance stabilizing transformation, vsd-normalized
counts) and RNA-seq analysis, including differential expression
analysis, was performed with the R package ‘DESeq2"”%.

Timecourse proteomics and phosphoproteomics

Cell preparation and vortioxetine treatment were performed as in
the ‘Timecourse RNA-seq library preparation and sequencing’ sub-
section except that cell numbers were scaled to be seeded in T-150
culture flasks, and three timepoints were measured (O h,3 hand 9 h).
Peptides were prepared using the PreOmicsiST kit on the PreON (HSE
AG) programmed to process eight samplesin parallel. Cell pellets were
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resuspendedin 50 pl of lysis buffer and denatured for 10 min at 95 °C,
followed by 3 h of digestion with trypsin and Lys-C. Peptides were
dried in a speed-vac (Thermo Fisher Scientific) for 1 h before being
resuspended in LC-LOAD buffer at aconcentration of 1 ug pl ™ withiRT
peptides (Biognosys).

Samples were analyzed onan Orbitrap Lumos mass spectrometer
equipped withan Easy-nLC 1200 (both Thermo Fisher Scientific). Pep-
tides were separated on an in-house packed 30-cm RP-HPLC column
(Michrom Bioresources, 75 um i.d. x 30 cm; Magic C18 AQ 1.9 um,
200 A). Mobile phase A consisted of HPLC-grade water with 0.1% for-
mic acid (FA); mobile phase B consisted of HPLC-grade acetonitrile
(ACN) (80%) with HPLC-grade water and 0.1% (v/v) FA. Peptides were
eluted ataflow rate of 250 nl min™ using anonlinear gradient from 4%
to 47% mobile phase B in 228 min. For data-independent acquisition
(DIA), DIA-overlapping windows were used, and a mass range of m/z
396-1,005was covered. The DIA isolation window size was set to 8 m/z
and 4 m/z, respectively, and atotal of 75 or 152 DIA scan windows were
recorded at a resolution of 30,000 with an AGC target value set to
1,200%. Higher-energy collisional dissociation (HCD) fragmentation
was set to 30% normalized collision. Full mass spectra were recorded
at aresolution of 60,000 with an AGC target set to standard and the
maximum injection time set to auto. DIA data were analyzed using
Spectronaut version 14 (Biognosys). MS1 values were used for quan-
tification, and peptide quantity was set to mean. Data were filtered
using g value sparse with a precursor and a protein g value cutoff of
0.01 FDR. Interference correction and local cross-run normalization
was performed. For PRM measurements, peptides were separated by
reverse-phase chromatography ona50-cm ES803 C18 column (Thermo
Fisher Scientific) that was connected toa Easy-nLC 1200 (Thermo Fisher
Scientific). Peptides were eluted at a constant flow rate of 200 nl min™
with a 117-min nonlinear gradient from 4% to 52% buffer B (80% ACN,
0.1% FA) and 25-50% B. Mass spectra were acquired in PRM mode on
an Q Exactive HF-X Hybrid Quadrupole-Orbitrap MS system (Thermo
Fisher Scientific). The MS1 mass range was 340-1,400 m/zataresolu-
tion 0f120,000. Spectrawere acquired at 60,000 resolution (automatic
gain control target value 2.0 x 10°). Normalized HCD collision energy
was set to 28% and maximum injection time to 118 ms. Monitored pep-
tides were analyzed in Skyline version 20, and results were uploaded
to PanoramaWeb.

For phosphopeptide enrichment, protein lysate from LN-229 cells
was prepared using a deoxycholate-based buffer. Five hundred micro-
grams of vortioxetine-treated cells at each timepoint (n = 3 replicates)
were used as starting material. A tryptic digest was performed for 16 h.
Samples were then purified on MACROSpin C18 columns (Harvard
Apparatus). Phosphopeptides were specifically enriched using IMAC
cartridges onthe Bravo AssayMAP liquid handling platform (Agilent).
Samples were dissolved in 160 pl of loading buffer (80% ACN, 0.1%
trifluoroacetic acid (TFA)). Then, the AssayMAP phosphoenrichment
protocol was performed with slight modifications. After purification,
dried peptides were resuspended in LC buffer and subjected to DDA-MS
on a Q Exactive H-FX mass spectrometer equipped with an Easy-nLC
1200 (both Thermo Fisher Scientific). Peptides were separated on
an ES903 column (Thermo Fisher Scientific, 75 pumi.d. x 50 cm; par-
ticle size 2 um). Mobile phase A consisted of HPLC-grade water with
0.1% FA; mobile phase B consisted of HPLC-grade ACN (80%) with
HPLC-grade water and 0.1% (v/v) FA. Peptides were eluted at aflow rate
0f 250 nl min™ using a nonlinear gradient from 3% to 56% mobile phase
Bin115 min. MS1spectrawere acquired ataresolution of 60,000 with
an AGC target value of 3° and amaximum injection time of 56 ms. The
scan range was between 350 m/z and 1,650 m/z. A data-dependent
top 12 method was used with a precursor isolation window of 1.3 m/z.
MS/MS scans were acquired with normalized collision energy of 27 at
aresolution of 15,000. AGC target was 1° with a maximum injection
time of 22 ms. Dynamic exclusion was set to 30 s. Data analysis was per-
formed using FragPipe (version19.1) with the LFQ-phospho workflow”.

Minsite localization probability was set to 0.75 in lonQuant™. Statisti-
cal analysis was performed on the phosphoprotein-filtered combined
protein outputin FragPipe-Analyst.

Clonogenicsurvival assay

Adherent cells (LN-229: 50 cells; LN-308: 300 cells) were seeded
in 96-well plates (n = 6 wells per condition; 100 pl of medium) and
incubated overnight. On the following day, medium was replaced
by fresh medium containing indicated final concentrations of vorti-
oxetine or DMSO. Glioblastoma-initiating cells (ZH-161 and ZH-562;
500 cells) were seeded in 75 pl of medium and incubated overnight.
Treatment was initiated by addition of 75 pl of medium containing 2x
concentrated vortioxetine or DMSO to reach indicated final concen-
trations. DMSO concentration was kept at 0.5% for all treatments and
controls. After treatment addition, cells were cultured for 11 d (LN-
229) to 13 d (other cell lines), and clonogenic survival was estimated
from a resazurin-based assay” using a Tecan M200 PRO plate reader
(AEx=560 nm/AEm =590 nm).

Collagen-based spheroid invasion assay

Spheroid invasion assay was performed as described (Kumar et al.”).
Inbrief, 2,000 cells were seeded cell-repellent 96-well U-bottom plates
(Greiner Bio-One, 650979, n = 6 wells per condition) and incubated
for 48 hto allow spheroid formation. Subsequently, 70 pl of medium
was removed, and spheroids were overlaid with 70 pl of 2.5% Colla-
genaselV (Advanced Biomatrix, 5005-B) in1x DMEM containing sodium
bicarbonate (Sigma-Aldrich, S8761), and collagen was solidified in
the incubator for 2 h. Collagen-embedded spheroids were then over-
laid with 100 pl of chemoattractant (NIH-3T3-conditioned medium)
containing 2x concentrated vortioxetine/DMSO (0.5% final DMSO
concentration across conditions) and incubated for 36 h. Spheroids
were stained with Hoechst, and images were acquired on a MuviCyte
imaging system (PerkinElmer, HH40000000) using a x4 objective.
Images were contrast enhanced and converted to binary using ImageJ/
Fiji and quantified with automated Spheroid Dissemination/Invasion
counter software (aSDIcs), which quantifies the migration distance
fromthe center of the spheroid for each detected cell nucleus™.

Invivodrugtesting

All animal experiments were performed under the guidelines of
Swiss federal law on animal protection and were approved by the
cantonal veterinary office (ZH98/2018). CD1 female nu/nu mice
(Janvier) of 6-12 weeks of age were used inall experiments,and 100,000
LN-229-derived or 150,000 ZH-161-derived cells were implanted”’.
Mice were euthanized when they exhibited neurological symptoms
or amouse grimace scale score of 2 (ref. 78). We confirm that these
criteria were not exceeded. Mice were housed in groups of five mice
per cage in the animal facility of LASC Zurich and kept in transparent
plastic Eurostandard Type Ill cages measuring 425 x 266 x 155 mm.
The cages contained autoclaved, dust-free sawdust bedding (80-90 g
per cage) and one Nestlet (5 x 5 cm). The mice were fed a pelleted and
extrudedKlibaNo. 3436 mouse diet (ProvimiKliba) ad libitum and had
unrestricted access tosterilized drinking water. Theroom maintained a
12-hlight/dark cycle with artificial light. The temperaturewas21+1°C,
and the relative humidity was 50 + 5%.

Test-naive mice were randomly assigned to drug treatment groups
for experiments (in vivo drug treatment Trials I-V). Tumor-bearing
mice were treated from day 5 to day 21 after tumor implantation with
intraperitoneally administered vortioxetine daily 10 mg kg™, citalo-
pramdaily 10 mg kg™, paliperidone daily 5 mg kg™, apomorphine daily
5mg kg™, aprepitant daily 20 mg kg™, brexpiprazole daily 1mg kg™,
chlorpromazine three times per week 10 mg kg™, TMZ 50 mg kg™ for
five consecutive days, CCNU 20 mg kg™ at day 7 and day 14 after tumor
implantation or daily DMSO control. MRI was performed with a 4.7T
imager (Bruker BioSpin) when the first mouse became symptomatic for
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invivo TrialsI-1llora 7T imager (Bruker BioSpin) at days 12, 25,38 and
48 after tumor implantation for in vivo Trial IV. Coronal T2-weighted
images were acquired using ParaVision 360 (Bruker BioSpin). Tumor
regions were identified manually by two independent raters, and maxi-
mum perimeter was outlined and quantified using MIPAV (11.0.7).

Forimmunohistochemistry analysis, mouse brains were embed-
ded in Shandon Cryochrome (Thermo Fisher Scientific) and were cut
horizontally by 8-um steps until reaching the tumor. Tissue sections
were stained for 1s with 0.4% methylene blue and rinsed with deion-
ized water (2 x 10 dips) to confirm tumors (when present) under the
microscope. Sections were stored in dark dry boxes overnight before
beingstoredat—80 °C. Sections were fixed with 4% PFA (Sigma-Aldrich,
F8775) in PBS, blocked in 5% FBS and 0.1% Triton containing PBS and
stained overnight at 4 °C in blocking solution with DAPI and the
following antibodies and dilutions: Alexa Fluor 488 anti-vimentin
(1:500, BioLegend, 677809, clone 091D3), anti-Ki67 (1:300, Cell Sign-
aling Technology, 9129S, clone D3B5) and goat anti-rabbit IgG (H + L)
highly cross-adsorbed secondary antibody, Alexa Fluor Plus 647
(1:500, Thermo Fisher Scientific, A32733). Imaging was performed
by %20 fluorescence imaging using the Pannoramic 250 slide scanner
(3DHISTECH).

Statistical analysis

For prospectively sampled patient material, no sample size determina-
tion was performed a priori as the effect size and variability of ex vivo
drug response among patients were unknown before the study. Our
sample sizes are similar to other published glioblastomastudies inves-
tigating the heterogeneity of patient samples and/or patient-derived
explants***%°, For all other statistical analysis, their respective tests
and significance values are reported in each corresponding figure
panel and/or Methods. For linear correlations, Pearson correlation
coefficients with two-tailed P values are annotated. When the Stu-
dent’s t-test was used for comparisons between groups (for example,
drug treatment versus control), data distribution was assumed to be
normal, but this was not formally tested. The Wilcoxon test was also
used as a non-parametric equivalent. For matched patient samples
or cells, paired t-tests or Wilcoxon tests were used. Unless otherwise
stated, multiple testing correction was performed using either the
Holm method for comparisons of fewer than 20 data points or the FDR
procedure for larger datasets.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Alltranscriptomics datageneratedin thisstudy, including scRNA-seq,
bulk RNA-seq and DRUG-seq datasets, have been deposited in the
National Center for Biotechnology Information’s Gene Expression
Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) under the follow-
ing accession numbers: GSE214965 (DRUG-seq; multiplexed RNA-seq
of 20 drugs, two timepoints); GSE214966 (scRNA-seq; four patients at
baseline); GSE214967 (scRNA-seq; patient sample after vortioxetine
versus DMSO treatment); and GSE214968 (RNA-seq; vortioxetine time-
course). Previously published scRNA-seq datasets analyzed in this
study are publicly available at the GEO under the following accession
numbers: GSE117891 and GSE131928. The publicly available GRCh38
humanreference genome was used to align RNA-seq reads. Proteomics
and phosphoproteomics data can be accessed via Panorama (https://
panoramaweb.org/GlioB.url). DIA and phosphopeptide enrichment
datasets are available from MASSIVE (ftp://massive.ucsd.edu/v04/
MSV000090357/). Drug-target annotations and protein-protein
interaction data were retrieved from the following publicly available
databases: Drug Target Commons (DTC; https://drugtargetcommons.
fimm.fi/) and STRING (https://string-db.org/). Other publicly available

databases used in this study include DAVID (https://david.ncifcrf.gov/),
KEGG (https://www.genome.jp/kegg/), Gene Ontology (http://gene-
ontology.org/) and PathwayNet (http://pathwaynet.princeton.edu/).
Data providedin supplementary tablesinclude ex vivo drug response
of glioblastoma cells (pharmacoscopy scores; Supplementary Table 2),
transcriptome-wide neural specificity and patient specificity scores
derived from three scRNA-seq datasets (Supplementary Table 3) and
insilico COSTAR drug screening results across 1,120,823 compounds
(Supplementary Data 2). Source data are provided with this paper.

Code availability

Code for de-multiplexing of DRUG-seq data can be found on GitHub
at https://github.com/RebekkaWegmann/drugseq_toolbox. COS-
TAR code and example data are available at https://www.snijderlab.
org/resources/COSTAR/. Image analysis was performed using the
open-source CellProfiler package available at https://www.cellpro-
filer.org. All other analyses were performed using standard MATLAB
R2019a-R2023aandR3.6.0-4.3.0 code.
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Extended Data Fig. 1| See next page for caption.
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Extended Data Fig. 1| Single-cell RNA-Seq analysis and ex vivo drug
profiling of standard-of-care treatment for glioblastoma. a, Example
FACS gates of patient sample PO11 to enrich for glioblastoma cells prior to
scRNA-Seq (n =50,000 cells shown). b, ¢, UMAP projection of 7684 single-
cell transcriptomes colored by b, patient (P007: 3,475 cells; PO11:1,490 cells;
P012:330 cells; PO13: 2,389 cells, this study), and ¢, cluster-id. TME, tumor
microenvironment; OPC, oligodendrocyte precursor cells; EC, endothelial
cell; TAM, tumor-associated macrophage; NK, natural killer cell. d, % cells
expressing genes (y-axis) per patient (data points) and subpopulation (x-axis)

across 22 glioblastoma patient samples (dots) and 3 scRNA-Seq datasets (shape).

e, Example IF images of patient samples (P047, P049) labeled with different
glioblastoma markers (Nestin, EGFR, and CX43). f, Quantification of IFimagesin
eacross n =4 glioblastoma patient samples (dots) for EGFR and CX43 expression
ineither Nestin+ or Nestin- cells. Two-tailed t-test. g, Genes (columns) enriched
in (NES-, SI00B-, and CD45-) triple-negative cells (‘Other’) compared to ([NES+

or SI00B +]and CD45-) cells across 22 patients (rows) from three scRNA-seq
cohorts. Heatmap depicts log2(fold change) of genes enriched in ‘Other’ cells.

Expression of top-10 genes (columns) per patient (rows) clustered into 3 gene
modules. h, Cell-type specific enrichment analysis (Web-CSEA®) of the ‘Other’
enriched gene modules asing. Dots represent individual Web-CSEA datasets,
example member genes of their respective gene modules annotated above.

i, Example single-cell crops of cleaved CASP3 + /- negative cells by IF in the image
dataset used to train a convolutional neural network (CNN) based on nuclear
(DAPI) and cell morphology (Brightfield) to detect apoptotic cells. j, Apoptotic
classifier CNN performance in classifying the test image dataset (n =1,214 single-
cellcrops). k, % cells classified as apoptotic by the CNN across the prospective
cohort (n =27 patients) and marker defined populations. I, Temozolomide

PCY score (TMZ; rows; n = 4 concentrations) across patient samples (columns;
prospective cohort, n =27; retrospective cohort, n =18). Color indicates the PCY
score for glioblastoma cells. Values beyond color scale limits set to minimum and
maximum values. m, Clinical predictability of ex vivo TMZ response (averaged
across n =4 concentrations) in stratifying progression free survival (PFS) of the
prospective cohort (n =16 patients). P-values from survival curve comparison by
the log-rank (Mantel-Cox) test. d,f,k, Boxplots as in Fig. 1b.
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Extended Data Fig. 2| Real-time neuroactive and oncology drug screening
insamples from patients with glioblastoma. a, PCY score matrix of oncology
drugs (ONCDs; columns; n = 65 drugs) across glioblastoma patient samples
(rows; n =12 patients). Heatmap color scale indicates the PCY score of
glioblastoma cells (Nestin + /S100B+ and CD45-). Asterisks (*) denote FDR-
adjusted P< 0.05 from a one-tailed t-test. b, PCY score matrix of neuroactive
drugs (NADs, n = 67 drugs) averaged across glioblastoma patient samples (n =27
patients) for each cell population defined by IF markers and total cell number
(TCN). Heatmap color scale indicates the mean PCY score of each respective
population averaged across patients. a, b, Outliers beyond color scale limits
were correspondingly set to minimum and maximum values. For clinical and
drugannotations, see Supplementary Tables1and 2. c-g Glioblastoma PCY
scores (y-axis) plotted per patient against selected parameters (x-axis).

¢, Age versus Elesclomol response. Linear regression line with a 95% confidence
interval. Pearson correlation coefficient with two-tailed P-value annotated.

d, TP53 mutational status versus Abemaciclib response. e, RET mutational status

versus Pazopanib response. f, Biological sex versus Brexpiprazole response.

g, FGFR2 copy number loss versus Sertindole response. Conf: confidence.

h, Example IF images of a patient sample (P025) at baseline (DMSO control) and
treated with Vortioxetine. Scale bar, 60 pm. i-k, Comparison of neuroactive
drug PCY scores of glioblastoma cells (n = 67 NADs; original PCY score) to NAD
PCY scores calculated by excluding cleaved CASP3+ apoptotic cells. Apoptotic
cells are defined either by IF (PCY score without IF CASP3 +) or by the apoptotic
CNN classifier (PCY score without CNN CASP3 +; see also Methods). Pearson
correlation coefficients with P-values annotated. i, j, NAD screens performed in
two validation patient samples (P048, P049). i, Comparison of the original PCY
score to the PCY score without IF CASP3+ j, Comparison of the PCY score without
IF CASP3+the PCY score without CNN CASP3+k, Comparison of the original PCY
score to the PCY score without CNN CASP3+ across the prospective cohort
(n=27 patients) and neuroactive drugs (n = 67 drugs). d-g, Two-tailed

Wilcoxon test. Boxplots asin Fig. 1b.
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Extended Data Fig. 3| Concentration-response curves of glioblastoma
celllines. a-d, Concentration-response curves of glioblastoma cell lines

(a, LN-229; b, LN-308; ¢, ZH-161; d, ZH-562) for a subset of neuroactive drugs
(n=9drugs) across different concentrations (logarithmically spaced x-axis,
n =5 concentrations). a, b, Y-axis denotes relative cell counts or ¢, d, relative

2D-projected spheroid area for 3D cultures normalized to DMSO control.
Concentration-response curves (solid black lines) are fitted when possible with
atwo-parameter log-logistic distribution with 95% confidence intervals (shaded
per cellline) and ED50 (red dashed lines). n = 3-5replicate wells/drug (dots),
n=15DMSO wells.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Functional genetic dependencies of glioblastoma on
heterogeneously expressed neuroactive drug targets. a, PCY score matrix

of antidepressants (left, n = 11drugs) and antipsychotics (right, n =16 drugs)
across glioblastoma patient samples (n = 27 patients) subsetted from the original
matrix, as shown in Fig. 2g. b, UMAP projection of 7684 single-cell transcriptomes
from four glioblastoma patient samples (P007, PO11, P012, PO13), colored by
aggregate sSCRNA-Seq expression across primary target genes (PTG) per receptor
classinFig. 3b. Color scaled to percent of maximum expression per receptor
class. ¢, Neural specificity score (x-axis) versus patient specificity score (y-axis)
for three independent glioblastoma scRNA-Seq datasets. Each dot represents
agene, with key marker genes annotated with labels. Key marker genes colored
by mean detected expression across cells and dot size scales with percent of
expressed cells. All other detected genes are colored ingrey. (Lee et al., this

study; n =4 patients, n = 7684 cells, n = 15,668 genes; Neftel et al., n = 9 patients,
n=13,519 cells,n=22,160 genes; Yu et al.,n = 9 patients, n = 4307 cells,n=19,098
genes).d, Example IF images of siRNA-mediated gene silencing of the positive
control gene (KIFII (+) ctrl; left), negative control gene (FLUC (-) ctrl; middle),
and ADRAZ2B (right). Scale bar, 60 pm. Cells are stained for DAPI (blue), cleaved
CASP3 (yellow) and TUBB3 (red). e, Kaplan-Meier survival analysis and associated
risk tables of the TCGA primary glioblastoma cohort (n = 120 patients) based on
RNA-Seq expression of 4 PTGs (panels) that significantly reduce cell viability in
Fig. 3d and stratify patient survival. Optimal cut-point for patient stratification
(high, low) is determined by maximally selected rank statistics. Survival curves
are compared using the log-rank (Mantel-Cox) test. 95% confidence intervals of
Kaplan-Meier estimates are indicated in shaded curves.
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Extended DataFig. 5| Drug-target connectivity identified by COSTAR.

a, Visualization of the local optimum in the cross-validated predictive power

of COSTAR LASSO regression when fitting abinomial model to predict drug
activity by PCY (hit vs neg) based on a drug’s connectivity pattern (COSTAR
constellation, shownin Fig. 4b). X-axis denotes the Lambda regularization
parameter (n = 60 unique values) and the y-axis denotes the cross-validated error
of the model (deviance) across independent bootstrapped runs (n =20 runs).
Red dots (average) and light grey error bars (standard deviation) are indicated.
Vertical dashed lines and colored circles indicate either the Lambda value with
the minimal meansquared error (green, MSE) or the more conservative Lambda

value with minimal MSE plus one standard deviation (blue, MSE +1STD).b, ePTGs
(x-axis) ranked by their integrated contribution ‘C’ to predict a hit (+1) or non-hit
(-1) (y-axis) inthe COSTAR model, separated for PCY-hit NADs (left) and ONCD
(right). ¢, Drug-target connectivity of PCY-hit drugs that were part of the COSTAR
training data (columns; n =30 drugs) to primary and secondary drug targets
(rows). COSTAR subscore (heatmap color scale) is the LASSO model coefficient
multiplied by the integrated connectivity of drug-to-target mapping. Target
genes with absolute COSTAR LASSO coefficients >0.1are displayed. Target level
(primary or secondary target) is annotated per gene on the left.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | DRUG-Seq confirms an AP-1 mediated transcriptional
response specific to neuroactive drugs with anti-glioblastoma efficacy.

a, Number of features detected by DRUG-Seq (y-axis) per drug condition
(columns) and by time-point n = 20 drugs, n = 2 time-points, n = 4 replicates per
drug/time-point. b, Principal component analysis (PCA) of averaged RNA-Seq
counts per drug (color) and time-point (shape). ¢, Comparisons of drug induced
transcriptional profiles by DRUG-Seq shown as log2(fold change) versus -
logl0(adjusted P-value) for NADs vs NEGs (22 h, left), ONCDs vs CTRLs (6 h,
middle), and ONCDs vs CTRLs (22 h, right). Significant genes by two-tailed Wald
test (DESeq?2) in light grey. Highlighted genes (blue) include AP-1transcription
factor (TF) network genes (PID AP1PATHWAY”®) and key COSTAR signature genes.
d, Top enriched KEGG terms for differentially expressed genes based on DESeq2
comparisons of NADs vs NEGs (6 h, left) and NADs vs NEGs (22 h, right). Bars
represent the number of differentially expressed genes presentin the annotation,
and colorsindicate -logl0(false discovery rate). e, Four AP-1transcription
factors that are down-regulated or unchanged after PCY-hit NAD treatment at

6 h. (y-axis, normalized RNA-Seq counts). Box plot groups (x-axis) correspond
to drug categories and dots represent the average expression per drug (colored
asin Extended Data Fig. 6b). ‘PCY-hit NAD’ and ‘PCY-hit ONCD’ abbreviated

to NAD and ONCD, respectively. Two-tailed t-test. f, Transcription factor
binding site enrichment analysis of genes that were upregulated in NAD treated
cellsin Extended Data Fig. 6¢ (22 h, left). Circles correspond to transcription
factor annotations, circle sizes scale with the fraction of genes present in the
annotation, and colorsindicate -loglO(false discovery rate). g, Correlation of
average COSTAR signature expression (x-axis) with ex vivo patient neuroactive
drug response (y-axis) plotted per drug (color) and time-point (shape). Mean
glioblastoma PCY score across patients (n = 27 patients) of neuroactive drugs
(n=11PCY-hit NADs, n = 3NEGs) plotted against their corresponding geometric
mean expression of AP-1TFs and BTG1/2 genes as shownin Fig. 5d. Linear
regression line with a 95% confidence interval. Pearson correlation coefficient
with two-tailed P-value annotated. a, e, Boxplots asin Fig. 1b.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7| Vortioxetine induces a robust calcium response and
alters the electrophysiological properties of glioblastoma cells. a, ER calcium
store release measured by FLIPR assays in LN-229 cells (n = 4 assay plates; n =18
conditions; n =12 wells/drug; DMSO and Thapsigargin (TG) positive control,
n=24wellseach).b, Extracellular calcium influx measured by FLIPR assays in
F050.C (n =17 conditions as in Fig. 5f). (*) denote conditions where the median
[Ca2+fold change] < 0. Black line: median value. a, b, Fold change relative to
DMSO after drug treatment. Two-tailed t-test against DMSO. P-values adjusted
for multiple comparisons by Holm correction. Black line: median value.

¢, Single-cell-resolved calcium response (AF/F,) measured by ratiometric Fura-2
imaging across 6 cell lines (x-axis; n = 3,561 cells total). Mean change in calcium
signalimmediately after Vortioxtine treatment compared to baseline, each
averaged across a120 s time window. Paired (baseline vs drug treatment) two-
tailed Wilcoxon test. d, Calcium response type stratified by the presence (¥) or
absence (@) of oscillatory calcium signaling at baseline (BASE) and Vortioxetine
(VORT; 20) treatment. ‘VORT 1-2 Peaks’: non-oscillatory calcium response with 1-2
peaks after VORT treatment. e, Heatmap of single-cell-resolved (rows) calcium

response (AF/F,) for response type ‘VORT 1-2 Peaks’ across time (x-axis). NR:

no response. f, Max (top) and mean (bottom) peak amplitude of AF/F, for type
‘BASE W, VORT W’ (n = 501 cells) displaying oscillatory calcium signaling during
both time spans across the 6 celllinesind. Paired two-tailed t-test. g, Resting
membrane potential (Vm) of LN-229 (n=13) and LN-308 cells (n = 10) measured
by whole-cell patch-clamp before (CTRL) and after VORT treatment (10 pM) in
matched single-cells (connected by grey lines). Paired two-tailed t-test.

h, Representative single-cell current traces for each cell line (LN-229, LN-308) and
condition (CTRL, VORT) corresponding to the voltage-clamp protocol (legend).
i, Current-voltage characteristics (I-V curves) of LN-229 (n =13) and LN-308

cells (n=10) ing, before (CTRL) and after VORT treatment (10 pM) in matched
single-cells. Standard error of the mean (SEM) shown as error bars. See Methods
for description of summary statistics. j, Relative gene (panels) expression upon
siRNA knockdown (columns) normalized to the FLUC negative control siRNA
(n=3biological replicates; dots). Two-tailed t-test with adjusted P-values after
Holm correction. Boxplots asin Fig. 1b.

Nature Medicine


http://www.nature.com/naturemedicine

Article

https://doi.org/10.1038/s41591-024-03224-y

a
Time points . .
[oT3]6]s] OB DUSP1 [ [T MAP2K3 / ___________ AP-ATES <o \ _> immediate early genes (IEQs)
- RNA IR 0USP? [T T MAP3KE g N down-stream effector proteins
lo[3] 9] Protein ! JUN Fos !
CTTTTm ouses crrer | 1 AR (s
log2(fold change) DUSPS ! ' ,---AP-1 effector--. - Stress response .
[EEss e ' ! v \
[TTTTT]PLA2GE 1 EnJUNB EnFOSB ! 1 (T ARC i [ HSPA1A
m e [ THIIN OUSPS : : : EEEEEDHOMEFH‘ ! N HSPA1B
MT2A ' ] . :
=5 0 3 5 . O ouspro THSRTER | D A | e
< i ' ' '
P , Ceemmmouses R ! FJ— T CEELTLIVAF | .---Cellcycle----, | [EEEIIHSPAS |
% DUSP6 i : . :
== e OEEET | rommmm e || RS | e
) [T MKNK2 ! (LI ATF4 ; ‘ b !
N [CEmEm prrscc [T TTTT]GNAI2 N J | CNENENCTC2 . [TIEEBAGT
[ELTT]PRECA [T GNG12 ; CEEEECORNTE | === J
° [T T T RPS6KA2 s -Other TFs --------~ . Ve
L] ' Y I\ L - -
., . ' EﬂEGm EﬂNR4A1 N DNA damage --,
. e °e i cora NR4A2: ,---Cytoskeletal --. | [N GADD45A |
| ! ! V GADDA45B |
K > | | R el | (oprmes | O
. - ' EHEG% I NRAA3 ! EEE-FLNB D E- ;
! EEE NFKB2 ! [ 5 I bbbl
E22- -l | Comrm e |
= | (SR NFATCH RELB !
S [CEEENTRK2 [\ emmo-eo-o-ooo- N = : ESsmss i +
: (2]
32 TrrmmrocrRa [ Crmmorert ) 8 ;N NrATCS '3 tosis, inflammation
¢ [ TGFBR2 6 o, O [IEmmmrers | B e S8 apoplosis, inflammation,
® ' ' o anti-proliferation, differentiation,
§  [ILIII]CACNS! 020" (pemmmi» @ 2 3 era
b+ [T TTI]FGFR1 o ' o] =z P53 signaling, cell cycle...
] L6 O
&  CTTTTE Forrs | (T :
b c

Vortioxetine time-course RNA-Seq

Vort.Oh vs. Vort.3h (Proteomics)

Vort.Oh vs Vort.9h (Proteomics)

50 ° 5 5 9DF15
Time-point
OO0 03 06 2 4 - T17A
.
= 25 09 @12@ 24 — Tg»lz SMG1 :_; UR“CT%DVQHGZA OSTP
R ° [ EFL1,’SORCNELOV1 Viue SMAPMEN TBC17 bpIT3
© g © Z3 WOR41EADS3, D% U LEGR1 2 3 mvcreaps LZ'COX YNDUF3 ‘
@ 0 e ° S DU§CY'— A""‘“ﬁ' cENTCE120 =1 ZNHI1mﬁ:}" b2 S DUt UE
- 8 - FRIRA *DDIT3 - WDR4 +AM < ZENEAT—
o . 22 MAgﬁng ) HMD}b3su1 @ 2 POCIAL . PGH2 HSPT6
a T e Pg({.o—lBP‘s %’ TBXZ .M,E’ﬁATFs
-25 1 1 DHR11
°
- . 0 0
-40 0 40 -7.5 -50 -25 0.0 25 5.0 7.5 -75 -50 -25 0.0 25 5.0 7.5
PC1 (38.9%) log2(fold change) log2(fold change)
d Protein type
Vort.3h NobT % Black label: differential phosphoprotein
MF|GO:0001228|DNA-binding transcription activator activity, RNA pol ll-specific - abundance (p.adj<0.05)
MF|G0:0001216|DNA-binding transcription activator activity = Stress response @ Grey label: high conf. association by STRING
* RIPK2
Cluster ID
Vort.9h * 10203040 50
BP|G0:0044242cellular lipid catabolic process | ] SERPINH1
BP|G0:0016042]lipid catabolic process o | ] HSP90B1 PMS2
MF|G0:0005215|transporter activity - | ] *—(OMLH1
MF|G0:0022857|transmembrane transporter activity o . N HSPB1 DNA mismatch repair
§ : Mitochondrial *
BP|G0:0032787|monocarboxylic acid metabolic process = [ ] irati
CCIGO:0005740|mitochondrial envelope - . fespiralon HsCB Mt MSHS )
BP|GO0:0044255|cellular lipid metabolic process - I EIF4G2 ® ® (*GoLGA3 Golgi structure
" * J
CC|G0:0005739|mitochondrion ] Iscu JUN TRIP1 M6PR
CC|G0:0042995|cell projection o *
-leg10(FDR) BP|G0:0007010|cytoskeleton organization - Proteasor-nal RPL18x~ BATF3 DNM2
BP|G0:0030036actin cytoskelet ization - degradation FOSE
! ytoskeleton organization - [N pSMC 4 @ EPN1
1.8 BP|GO:0030029]actin filament-based process -| [ SMD8 “UAMTOR1 *
BP|G0:0045787|positive regulation of cell cycle 4 T O ‘
14 €C|G0:0015629]actin cytoskeleton - [N ) PSWDT RS2 c2 * NECAP1
N BP|G0:0031032|actomyosin structure organization 1 FPSMA5 f
| lactomy g - PV g RPS10  TSC1 Clathrin-mediated
21012 QM BPSTE Ly I docytost
NES PSMAZ gy e function
e PCBP2 s [N JUN_LAPSPELER
,—IZH 5 2 8 JUN_EEPQTVPEMPGETPPLpSPIDMESQER
S = p——— L NRNPA2B €2 6 JUN_EEPQTVPEMPGETPPLpSPIDoxMESQER
TPO3 I 5 @H Toggly JUN_EEPQTVPEoXMPGETPPLpSPIDMESQER
- o
r TPOS HNRNR 2e 2 HSPB1_QLpSSGVSEIR
=-1 @ @YTHDF1 2 HSPB1_PLPPAAIEpSPAVAAPAYSR
OFPOXMXZZTTOTZONINZTZNZOZMEZONES TS NONO Q. HSPB1_GPpSWDPFR
OdmMCOCASOR0XROBXEMIOTUIONSET>>COC —
=STwoynmd mas b4 JZnZ : HSPB1_AQLGGPEAAKpSDETAAK
ER R N E N e R E R ET mRNA processing -
o o - = RN N N EET®
oo
@

Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Vortioxetine induces animmediate and potent AP-1
response as measured by time-resolved transcriptomics, proteomics, and
phosphoproteomics. a, Time-course visualization of AP-1(PID) and MAPK
(KEGG) pathway induction following Vortioxetine treatment (20 pM) in LN-

229 cells measured by RNA-Seq (n = 6 time-points) and by proteomics (n=3
time-points). n =3 replicates/time-point. Genes selected for visualization are
significantly differentially expressed by RNA-Seq at all time-points compared

to the first time-point (0 h). Heatmap color scale represents log2(fold change)
compared to the O h time-point. b, Principal component analysis (PCA) of
replicate-averaged RNA-Seq counts following Vortioxetine treatment (20 pM)

in LN-229 cells (n = 3 replicates/time-point) colored by time-point. ¢, Time-point
comparisons (left,3 hvs O h; right, 9 hvs O h) of proteomics measurements
following Vortioxetine treatment (Vort, 20 pM; n = 3 replicates/condition) in
LN-229 cells shown as volcano plots of log2(fold change) versus -logl0(P-value).
Proteins above a -10g10(0.05 P-value) threshold are colored in purple. Two-tailed

t-test. d, Gene Ontology (GO) gene set enrichment analysis of signed -log10
(P-value) of comparisons inc. Bars represent the normalized enrichment score
(NES) and colors indicate ~log10(false discovery rate). e, Log2(fold change)

in protein expression per time-point (rows; relative to 0 h) for the proteins
(columns) contributing to enriched GO term “GO:0001216 DNA-binding
transcription activator activity” in Extended Data Fig. 8d. AP-1transcription
factorsarelabeled inred. f, Connected protein-protein interaction network of
differentially abundant phosphoproteins upon Vortioxetine treatment (20 pM;
n=3replicates/condition) in LN-229 cells at any time-point. 22 out of 67 connected
and significantly enriched phosphoproteins are shown (asterisks; black labels)
with high confidence STRING protein interactions (grey labels). Cluster IDs (node
colors) are based on the MCL algorithm with annotated biological pathways.
Heatmap depicts protein abundance-normalized phosphopeptide (rows)
intensities of JUN and HSPB1 across time-points (columns). Both genes are also
significantly upregulated at the transcript level across all time-points.
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Extended Data Fig. 9 | Single-cell RNA-Seq and immunofluorescence of
Vortioxetine-treated glioblastoma patient cells. a, UMAP projection of 1736
single cells from patient sample P024 upon 3 h of treatment with Vortioxetine
(VORT; n =577 cells; purple; 20 pM) or DMSO vehicle control DMSO; n = 1159
cells; grey). b, Expression levels of the top five marker genes expressed in more
than10% of cells per scRNA-Seq cluster (columns) in Extended Data Fig. 9a. Circle
sizes scale with the percent of cells within each cluster expressing each gene.
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each cluster in Extended Data Fig. 9b using Seurat version 4.3.0%. d, Percent of
CD45+immune or NES+ glioblastoma cells expressing AP-1factors measured

by immunofluorescence in glioblastoma patient samples (n = 11 patients) 24 h
after DMSO control or Vortioxetine-treatment ex vivo (10 and 20 pM). Patient-
matched paired two-tailed t-test (compared to DMSO control) with FDR-adjusted
P-values. Boxplots show 25th-75th percentiles with a line at the median; whiskers
extend to 1.5 times the interquartile range.

Nature Medicine


http://www.nature.com/naturemedicine

Article

https://doi.org/10.1038/s41591-024-03224-y

Spheroid formation assay

a b C
20 ZH-562
i < :5
DMSO .8. o 8 8 g 54 ‘ 9.21e-33
[ ] "’ 3- ® o s o ’%‘
~ 15 4 4 4 < [ 0005
£ PY & wx x * €
PALI 3 PS 2 ;
oy [ @ 47 5
o 10 == : o %
Q <
APOM £ L. = ;
5 4= L <
2 s 8 3 ;
o %
.
'\
APRE .
° $—e 5 o1 1 s
O & F N & 9 '
0‘@ ¥ §Q~ Q,Q‘Q’ &L & & Vortioxetine (UM)
d Collagen invasion assay (# of cells) e Collagen invasion assay (distance)
LN-229 LN-308 LN-229 LN-308
1400 0.003 ns 450 1.55e-05 375 ns
0.013 ns 0.047 ns
0.036 ns s I —
120 600
. 400 . 350
==
1000f ° = & . ﬁ
» & . . 400 f] 2 0 %25
T 800 ‘ i : > . :
o 0 (o]
- B ES) 8 300 &= * [ ]
ko) 200 . S 300 ==
S 600 2 ~ . .
o 2 275
1S ZH-161 ZH-562 S ZH-161 ZH-562
k< 2.71e-07 600 5.16-06 2 400 1.26e-04 320 1.34e-05
@ 800 2.56e-04 8.86¢-05 <) 0.002 1.73¢-04
£ 2.560-04 500 0.001 E —t— 1.826-04
2 [ 400 [ c 280:
T 350
600 )
o 300 = = g =S
& . 240{ .
es . L .
400 * 000 T, 300 - I;J
. 100 ¢ = * 200 *
200 e - ° -
&O w&& & &0 n@ v§ o P o§ @?\ S @§\ _¢§
¥ L« & B« & T« &
O \\o‘z" O e AOq- O & &£ 9 & £ 9O
N K
f Clonogenic survival assay |
LN-229 LN-308
®a VORT sig.response
1.00 A A ® Yes ® No
0.75 °© 04 Al s EGFR amplification
— 8 - ® CNV.gain A No alteration
e 050 2] Py
S 5 Loat Patient
A
8 oz 0.5 Q L "T ................ atient group
= @ 0.0 Al A Group 1
% 0.00 0.00 3 (Ki67% >= 40% & EGFR any) or
§ 0 5 10 15 20 0 5 10 15 20 3 (Ki67% < 40% & EGFR CNV.gain)
£ £
R N S
© . ZH-161 ZH-562 S o4 Group 2
X 1.00 (Ki67% < 40% & EGFR no alteration)
g 150 * )
e - Wilcoxon, P =0.011
S 125 . A
Z 075 W
1.00] ¢ Group 1 Group 2
0.50 0.75 i (Ki67% and EGFR) patient group
0.50]
0.25 O . 0.25 <
0.00|
0 5 10 15 20 0 5 10 15 20
Vortioxetine (M)
g [_(control ][ CITA I [ VORT |
- 6 P=0.033
Z ns
#1 E
=
E 4
(s}
©
g 2
5
g
“ : =
~ (-)ctrl CITA VORT

DAPI VIM MKI67

Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Vortioxetine reduces tumor burdenin vivo
independent of serotonin modulation and affects tumor invasiveness and
long term growth. a, Representative MRl images of three ZH-161 transplanted
mice (columns) after 15 days of drug treatment (Trial II; n = 7 drugs). Tumor
perimeters indicated in yellow. b, Quantification of tumor perimeters
corresponding to a. Dots: individual mice per drug (columns); Red lines: mean
values. Two-tailed t-test. ¢, Spheroid formation analyzed by the 2D-projected
area of the ZH-562 line measured after 12 days of Vortioxetine treatment (0.1-

5 uM; n =45-47 wells/condition). Data is shown as a boxplot, individual data
points, and histogram. d, Number of migrated cells in a collagen-based spheroid
invasion assay after 36 h of Vortioxetine treatment (2, 3.5, 5 uM) across four
glioblastoma cell lines; LN-229 (n = 560-1125 cells/well), LN-308 (n = 137-426 cells/
well), ZH-161 (n =200-574 cells/well), ZH-562 (n = 38-253 cells/well). e, Mean cell
migration distance per condition (n = 5Sreplicate wells) for d. c-e, One-tailed t-test
with adjusted P-values after Holm correction. f, Clonogenic survival measured

by aresazurin-based cell viability assay after 11-13 days of Vortioxetine treatment

(7 concentrations; 0.625-20 uM, n = 6 replicate wells/concentration) across four
glioblastoma cell lines; LN-229 (n = 50 cells/well), LN-308 (n = 300 cells/well),
ZH-161(n =500 cells/well),and ZH-562 (n = 500 cells/well). Dose-response fitted
with atwo-parameter log-logistic distribution with 95% confidence intervals
(grey) and ED50 (dashed lines). g, Representative immunohistochemistry images
of brain sections (n = 3 mice/treatment group) stained with human-specific

Ki67 and Vimentin (VIM). h, Ki67 tumor intensity normalized to background
withn =3-4 mice (dots) analyzed per group. Two-tailed t-test comparing CITA
and VORT treatment to (-) ctrl. i, Vortioxetine ex vivo PCY score (n = 27 patients;
prospective cohort) stratified by Ki67 levels and EGFR CNV alterations. Group 2
patients with low Ki67 levels and an absence of EGFR CNV alterations (n = 7/27;
26%) were significantly less likely to respond to Vortioxetine ex vivo compared to
Group1(Wilcoxon test; P=0.011). Among the clinical/genetic parametersin
Fig.2d, e,Ki67 and EGFR alterations were the most predictive two parameters
based onaregression subset selection for ex vivo Vortioxetine response.

¢c,d, e, i, h,BoxplotsasinFig. 1b.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed
IZ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

< The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

|X’ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
N Gjve P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

OXX O OO0 000F%

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  All data was collected with commercially available and/or previously published methods. See Methods section and Supplementary
Information for further details.

Data analysis MATLAB R2019a-R2020a, R Studio, R version 4.1.0, R package ‘infercnv’ (1.18.0), CellProfiler 2.2.0, ImageJ, FlowJo 10.4.2, 10x Genomics Cell
Ranger versions 3.0.1 and 6.1.1, Torrent Suite Software (lon Reporter, 5.12 and after), ScreenWorks software version 3.2.0.14, Spectronaut
version 14, Incucyte base analysis software version 2020B, Spheroid Dissemination/Invasion counter software (aSDlcs), MIPAV 11.0.7.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All transcriptomics data generated in this study including single-cell RNA-Seq, bulk RNA-Seq, and DRUG-Seq datasets have been deposited in the public repository




NCBI Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) under the following accession numbers: GSE214965 (DRUG-Seq; multiplexed RNA-Seq of
20 drugs, 2 time points), GSE214966 (scRNA-Seq; 4 patients at baseline), GSE214967 (scRNA-Seq; patient sample after Vortioxetine vs DMSO treatment), and
GSE214968 (RNA-Seq; Vortioxetine time course). Previously published single-cell RNA-Seq datasets analyzed in this study are publicly available at GEO under
accession numbers GSE117891 and GSE131928. The publicly available GRCh38 human reference genome was used to align RNA-Seq reads. Proteomics and
phosphoproteomics data can be accessed via Panorama (https://panoramaweb.org/GlioB.url). DIA and phosphopeptide enrichment datasets are available from
MASSIVE (ftp://massive.ucsd.edu/v04/MSV0O00090357/). Drug-target annotations and protein-protein interaction data were retrieved from the following publicly
available databases: Drug Target Commons (DTC; https://drugtargetcommons.fimm.fi/) and STRING (https://string-db.org/). Other publicly available databases used
in this study include DAVID (https://david.ncifcrf.gov/), KEGG (https://www.genome.jp/kegg/), Gene Ontology (http://geneontology.org/), and PathwayNet (http://
pathwaynet.princeton.edu/). Data provided via Supplementary Tables include ex vivo drug response of glioblastoma cells (pharmacoscopy scores; Supplementary
Table 2), transcriptome-wide neural- and patient-specificity scores derived from three scRNA-Seq datasets (Supplementary Table 3), and in silico COSTAR drug
screening results across 1,120,823 compounds (Supplementary Data 2). Source data corresponding to each figure is provided with the manuscript.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Our glioblastoma cohort (n=62 patients; including both prospective and retrospective cohorts and validation patient samples)
comprises of 29 females and 33 males identified by their sex. This results in a sex ratio of 46.8% female to 53.2% male
present in our cohort. The cohort represents a random sampling of the disease population, where surgical samples were
collected from enrolled patients without any exclusion criteria other than the pathological diagnosis being IDH-wildtype
glioblastoma. Gender information was not collected as it was not relevant to the current study.

Reporting on race, ethnicity, or ' Information on race, ethnicity, or other socially relevant groupings was not collected for the purpose of this study.
other socially relevant

groupings

Population characteristics Population characteristics including sex, age, MGMT promoter methylation status, and frequent genetic alterations are
reported as a metadata table in Supplementary Table 1.

Recruitment The glioblastoma cohort represents a random sampling of the disease population, where surgical samples were collected
from enrolled patients without any exclusion criteria other than the pathological diagnosis being IDH-wildtype glioblastoma.
For the retrospective bio-banked tissue, samples were further selected based on quality control measures including cell
viability, cell number, and the amount of debris present in the sample. There was no limit on tumor size for the human
samples included in the study and no selection bias of the enrolled patients.

Ethics oversight Surgically removed tumors were collected at the University Hospital of Zurich (Universitatsspital Zurich, USZ) with approval by

the Institutional Review Board, ethical approval number KEK-StV-Nr.19/08, BASEC number 2019-02027 and 2021-00652.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size For the prospective glioblastoma patient cohort, no sample size determination was performed a priori as the effect size and variability of ex
vivo drug response among patients was unknown prior to the study. We processed patient samples according to their surgical availability
between August 2019 - December 2021. Our sample sizes build upon other successful glioblastoma studies investigating patient explants such
as: https://doi.org/10.1016/j.cell.2019.11.036.

Data exclusions  No data was excluded from the study

Replication Top neuroactive drugs identified in this study was validated across patient ex vivo samples (n=27 patients), glioblastoma cell lines (n=4 cell
lines), patient-derived cultures (n=3 lines), and mouse in vivo models (n=5 trials). For high-content image-based drug screening, drug plates
had the following number of replicate wells per drug/concentration. Glioblastoma drug plate; drug, n=3 wells; DMSO, n=16 wells. Neuroactive
drug plate; drug, n=4 wells; DMSO, n=16-24 wells; Oncology drug plate; drug, n=4 wells; DMSO, n=16 wells. For other biological
measurements such as siRNA-mediated gene silencing, DRUG-Seq, RNA-Seq, and proteomic profiling, a minimum of 3-4 technical or biological
replicates across different time points were measured. In vivo mouse experiments were repeated across n=5 trials. DRUG-Seq was performed
across two independent sequencing experiments, while scRNA-Seq analysis was validated across n=3 independent datasets. All attempts at
experimental replication were successful and reported in the study.

Randomization  As this was a prospective observational study conducted with patient surgical tissue, randomization of patient samples was not necessary as
patients were not allocated into different groups. For high-content image-based assays (e.g. drug screening, siRNA screening), to control for
plate effects due to laser illumination, drugs or other biological/chemical agents were dispensed into the 384-well plates using an Echo 550
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liquid handler (Labcyte) at their respective concentrations in a randomized plate layout. For mouse in vivo experiments, mice were randomly
allocated into the different treatment arms.

Blinding Blinding was not relevant to our study as their was no intervention in the study design.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |:| ChiIP-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |:| |:| MRI-based neuroimaging

Animals and other organisms
Clinical data
Dual use research of concern

Plants
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Antibodies

Antibodies used Alexa Fluor® 488 anti-S100 beta (1:1000, Abcam, #ab196442, clone EP1576Y), PE anti-NESTIN (1:150, Biolegend, #656806, clone
10C2), Alexa Fluor® 488 anti-CD3 (1:300, Biolegend, #300415, clone UCHT1), Alexa Fluor® 647 anti-CD45 (1:300, Biolegend, #368538,
clone 2D1), Alexa Fluor® 488 anti-NESTIN (1:150, Biolegend, #656812, clone 10C2), Alexa Fluor® 555 anti-S100 beta (1:1000, Abcam,
#ab274881, clone EP1576Y), PE anti-CD3 (1:300, Biolegend, #300441, clone UCHT1), Alexa Fluor® 647 anti-Tubulin Beta 3 (1:1000,
Biolegend, #657406, clone AA10), Alexa Fluor® 555 anti-Cleaved Caspase-3 (1:500, Cell Signaling Technology, #9604S), Alexa Fluor®
546 anti-HOMER (1:300, Santa Cruz Biotechnology, #sc-17842 AF546, clone D-3), PE anti-CFOS (1:300, Cell Signaling Technology,
#14609S, clone 9F6), FITC anti-ATF4 (1:300, Abcam, #ab225332), Alexa Fluor® 488 anti-JUND (1:300, Santa Cruz Biotechnology,
#sc-271938 AF488, clone D-9), Alexa Fluor® 594 anti-CD45 (1:300, Biolegend, #368520, clone 2D1), Alexa Fluor® 488 anti-Vimentin
(1:500, Biolegend, #677809, clone 091D3), anti-Connexin43 (1:500, Cell Signaling Technology, #83649T), anti-EGFR (1:300, Abcam,
#ab98133), anti-CHI3L1 (1:300, Cell Signaling Technology, #47066S, clone E2L1M), anti-Nestin (1:150, Biolegend, #656802, clone
10C2), anti-S100 beta antibody (1:300, Abcam, #ab215989, clone EP1576Y), anti-Ki67 (1:300, Cell Signaling Technology, #91295S,
clone D3B5), donkey anti-sheep IgG (H+L) cross-adsorbed secondary antibody, Alexa Fluor™ 488 (1:500, Thermo Scientific, #A11015),
goat anti-mouse 1gG (H+L) highly cross-adsorbed secondary antibody, Alexa Fluor™ Plus 555 (1:500, Thermo Scientific, #A32727),
goat anti-rabbit IgG (H+L) highly cross-adsorbed secondary antibody, Alexa Fluor Plus 647 (1:500, Thermo Scientific, #A32733)

Validation All primary antibodies used in the study had confirmed species reactivity against human antigens according to the manufacturer's

website. All primary antibodies used in the study are commercially available and validation data for their respective application are
noted on the manufacturer's website.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) LN-229 (ATCC, #CRL-2611) and LN-308 were cultured in Dulbecco’s modified Eagle medium (DMEM, #41966, Gibco)
supplemented with 10% fetal bovine serum (FBS, #10270106, Gibco). ZH-161 and ZH-562 was generated from freshly
isolated tumor tissue and cultured in Neurobasal medium (NB, #21103049, Gibco). LN-229 is a cell line derived from a female
patient while LN-308, ZH-161, and ZH-562 are cell cultures derived from male patients.

Authentication Cell lines (LN-308, ZH-161, and ZH-562) were authenticated at the Leibniz Institute DSMZ (Braunschweig, Germany) by short
tandem repeats (STR) analysis of DNA that involves matching mutation profiles between the original tissue and derived cell
line. LN-229 was not authenticated as it was bought directly from the vendor (ATCC).

Mycoplasma contamination Cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines No commonly misidentified cell lines were used in the study.
(See ICLAC register)

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals CD1 female nu/nu mice (Janvier, Le Genest-Saint-Isle, France) of 6 to 12 weeks of age




Wild animals No wild animals were used in the study.
Reporting on sex Female mice were used in this study.
Field-collected samples  No field collected samples were used in the study.

Ethics oversight All animal experiments were done under the guidelines of the Swiss federal law on animal protection and were approved by the
cantonal veterinary office (ZH98/2018)

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Plants

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.
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Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor
was applied.

Authentication Describe-any-atithentication-procedures foreach-seed-stock-tised-ornovel-genotype-generated—Describe-any-experiments-used-to
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.

Flow Cytometry

Plots
Confirm that:
|Z| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|Z| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
g All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Cryopreserved single-cell suspensions of glioblastoma patients samples were thawed in reduced serum media (DMEM
containing 2% FBS) and used for subsequent flow cytometry experiments. Single-cell suspensions of patient samples were
prepared by dissociating surgically derived tumor tissue with Collagenase IV (Img/ml) and DNasel (0.1mg/ml) using the
gentle MACS Octo Dissociator.

Instrument BD FACSAriaTM Fusion Cell Sorter

Software FlowJo 10.4.2

Cell population abundance Post-sort samples were used for subsequent single-cell RNA-sequencing experiments. Abundances of relevant cell
populations such as glioblastoma cells, immune cells, and other tumor microenvironment cell types were determined based
on their single-cell transcriptomes and marker gene expression outlined in Extended Data Figure 1e,f.

Gating strategy FACS gates were set based on CD45 (Alexa Fluor® 594 anti-CD45, 1:20, Biolegend, #368520, clone 2D1), SYTOX Blue and

DRAQS intensities to isolate live CD45+ and CD45- populations separately as shown in Extended Data Figure 1b. FSC-A and
SSC-A gates were first set to only exclude small objects that did not resemble cells, then a doublet-exclusion gate was set on
FSC-W and FSC-H. A live cell gate was set to select DRAQ5+SYTOX- viable cells. Finally, gating on CD45 distinguished between
immune cells and non-immune cells and were sorted separately. The two populations were mixed back at different ratios to
enrich for non-immune cells prior to single-cell RNA-sequencing.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state; event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial




Design specifications or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across

subjects).
Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size,
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI [ ] used L] Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction,
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g.
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and
second levels (e.qg. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether
ANOVA or factorial designs were used.

Specify type of analysis: [ | whole brain [ | ROI-based || Both

Statistic type for inference Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

(See Eklund et al. 2016)

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).

Models & analysis

n/a | Involved in the study
|:| |:| Functional and/or effective connectivity

|:| |:| Graph analysis

|:| |:| Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation,
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency,
etc.).

Multivariate modeling and predictive analysis  Specify independent variables, features extraction and dimension reduction, model, training and evaluation
metrics.
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