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High-throughput identification of 
repurposable neuroactive drugs with potent 
anti-glioblastoma activity
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Zuzanna Lottenbach1, Rebekka Wegmann    1, Miaomiao Sun2, Michel Bihl3, 
Bartłomiej Augustynek4,5, Sven P. Baumann4, Sandra Goetze    6,7,8, 
Audrey van Drogen6,7,8, Patrick G. A. Pedrioli6,7,8, David Penton9, Yasmin Festl1, 
Alicia Buck1,2, Daniel Kirschenbaum10, Anna M. Zeitlberger11, Marian C. Neidert11, 
Flavio Vasella12, Elisabeth J. Rushing10, Bernd Wollscheid6,7,8, 
Matthias A. Hediger4, Michael Weller    2,13,15 & Berend Snijder    1,7,13,15 

Glioblastoma, the most aggressive primary brain cancer, has a dismal 
prognosis, yet systemic treatment is limited to DNA-alkylating 
chemotherapies. New therapeutic strategies may emerge from explo
ring neurodevelopmental and neurophysiological vulnerabilities of 
glioblastoma. To this end, we systematically screened repurposable 
neuroactive drugs in glioblastoma patient surgery material using a clinically 
concordant and single-cell resolved platform. Profiling more than 2,500 ex 
vivo drug responses across 27 patients and 132 drugs identified class-diverse 
neuroactive drugs with potent anti-glioblastoma efficacy that were validated 
across model systems. Interpretable molecular machine learning of drug–
target networks revealed neuroactive convergence on AP-1/BTG-driven 
glioblastoma suppression, enabling expanded in silico screening of more 
than 1 million compounds with high patient validation accuracy. Deep 
multimodal profiling confirmed Ca2+-driven AP-1/BTG-pathway induction 
as a neuro-oncological glioblastoma vulnerability, epitomized by the 
anti-depressant vortioxetine synergizing with current standard-of-care 
chemotherapies in vivo. These findings establish an actionable framework 
for glioblastoma treatment rooted in its neural etiology.

Glioblastoma is the deadliest primary brain cancer with limited treat-
ment options, shaped by heterogeneous developmental programs, 
genetic drivers and tumor microenvironments (TMEs)1–6. Despite an 
increasing understanding of this heterogeneity, the alkylating agent 
temozolomide (TMZ), prolonging median survival from 12 months to 
15 months, remains the only first-line drug approved for glioblastoma7,8. 
Targeted therapies have been largely unsuccessful, in part due to the 
blood–brain barrier (BBB) limiting tumor accessibility, the presence 

of treatment-resistant glioblastoma stem cells (GSCs) and the lack of 
clinically predictive patient model systems9–11. Systemically addressing 
these therapeutic roadblocks is an urgent clinical need.

An emerging paradigm is to consider the neurobiology of 
glioblastoma, including stemness signatures resembling neural 
development3,4,12–17, synaptic integration of cancer cells into neu-
ral circuits18–25 and the modulation of specific neurotransmitter or 
other secretory pathways in the TME18,26–31. Such neural aspects of 
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by PCY in prospectively sampled surgery material from 27 patients with 
IDH-wildtype glioblastoma (‘prospective cohort’; n = 27; Fig. 1d and 
Supplementary Tables 1 and 2). Each patient sample was dissociated on 
the day of surgery and directly incubated with drugs for 48 h (Fig. 1e). 
Subsequent IF staining of the marker panel and imaging by automated 
microscopy revealed a high degree of inter-tumor and intra-tumor 
heterogeneity at baseline (Fig. 1f,g): across patients, glioblastoma cells 
ranged from 4% to 39%, immune cells from 1% to 82% and ‘other’ cells 
from 13% to 84% (Fig. 1g). In the absence of drug treatment, on average, 
less than 10% of glioblastoma cells were apoptotic at 48 h (Extended 
Data Fig. 1i–k).

We next quantified the drug-induced ‘on-target’ tumor reduction, 
where a positive PCY score indicates a greater reduction of glioblas-
toma cells relative to TME cells. Limiting our analysis to newly diag-
nosed patients who received TMZ as part of their first-line treatment 
in the clinic and with documented clinical outcome (16 of 27 patients), 
we found that higher ex vivo TMZ sensitivity of glioblastoma cells, but 
not of immune or other cells, was associated with improved patient 
outcome (Fig. 1h,i and Extended Data Fig. 1l,m). This clinical association 
was validated in a retrospective cohort (n = 18 biobanked samples), 
where higher ex vivo TMZ sensitivity of glioblastoma cells was prog-
nostic for longer progression-free survival (PFS) and overall survival 
(OS) (Fig. 1j). Inversely, across both cohorts, stratification by previ-
ously reported median PFS for TMZ chemoradiotherapy (6.9 months7) 
revealed higher ex vivo TMZ sensitivities in patients with longer survival 
(Fig. 1k). Lastly, methylated MGMT promoter status was associated with 
higher ex vivo TMZ sensitivities, recapitulating this well-established 
prognostic factor (Fig. 1l). Taken together, these results demonstrate 
the utility of PCY for therapeutic discovery and patient stratification 
in glioblastoma.

Select NADs display robust anti-glioblastoma activity
To find repurposable drug candidates for glioblastoma treatment, we 
tested both neuroactive and oncology drug libraries across patient 
samples by PCY (Fig. 2a–g, Extended Data Fig. 2a–g and Supplemen-
tary Table 2). The NAD library, screened across the prospective cohort 
(n = 27), consisted of drugs approved for neurological diseases such 
as depression, schizophrenia and Alzheimer’s disease (n = 67 drugs; 
20 µM). In contrast, the oncology drug (ONCD) library, screened when 
enough surgical material was available (n = 12), included cancer ther-
apies such as cyclin-dependent kinase (CDK) and receptor tyrosine 
kinase (RTK) inhibitors (n = 65 drugs; 10 µM). As before, we measured 
the ‘on-target’ reduction of glioblastoma cells after 48 h of drug incuba-
tion after surgery while also quantifying the drug responses of immune 
and ‘other’ cells (Extended Data Fig. 2b).

Across the cohort, we identified 13.5% of on-target ex vivo drug 
responses (349 out of 2,589 measured; PCY score > 0 and false dis-
covery rate (FDR)-adjusted q < 0.05; Fig. 2b). The top four drugs were 
oncology drugs targeting different aspects of glioma etiology: the 
oxidative stress inducer elesclomol (rank 1 out of 132 drugs), tyrosine 
kinase inhibitors sorafenib (rank 2) and ponatinib (rank 4) and the CDK 
inhibitor ribociclib (rank 3). Several top ONCD candidates had reported 
BBB permeability, including elesclomol, EGFR inhibitor osimertinib 
(rank 11) and tyrosine kinase inhibitor regorafenib (rank 9). Exploring 
the clinical and pharmacogenetic associations with ONCD responses 
across patients revealed higher ex vivo sensitivity to elesclomol with 
age, higher sensitivity to CDK4/6 inhibitor abemaciclib in patients with 
TP53 mutations and higher sensitivity to RTK inhibitor pazopanib in 
patients with RET copy number loss (Extended Data Fig. 2c–e). This 
exploratory analysis can, thus, efficiently generate hypotheses for per-
sonalized glioblastoma treatment opportunities, warranting further 
evaluation in larger cohorts.

NADs resulted in a similar fraction of significant on-target 
responses across the cohort (11.3%; Fig. 2b), with 15 NADs displaying 
potent anti-glioblastoma activity across patients (referred to as ‘top 

glioblastoma offer clinically actionable vulnerabilities that may be 
pharmacologically targeted by repurposing approved ‘neuroactive’ 
drugs (NADs) designed to cross the BBB and routinely prescribed for 
other neurological indications. Exciting recent studies have reported 
tumor-extrinsic modulation via the brain–glioma interface as well 
as unexpected roles of certain metabolic and stemness pathways in 
gliomas that can be targeted by specific NADs21–25,27,30. However, for the 
vast majority of NADs, their anti-cancer activity has not been tested in 
prospective glioblastoma patient cohorts, and tumor-intrinsic NAD 
targets remain incompletely mapped. Therefore, a systematic preclini-
cal evaluation of neurotherapeutic glioblastoma vulnerabilities and 
personalized treatment opportunities is needed.

Results
Clinically concordant ex vivo drug profiling for glioblastoma
To identify clinically actionable therapeutic vulnerabilities of glioblas-
toma, we performed prospective multimodal drug profiling across 
IDH-wildtype glioblastoma patient samples, two-dimensional (2D) and 
three-dimensional (3D) patient-derived cell (PDC) cultures, machine 
learning–based drug–target networks and orthotopic mouse models 
(Fig. 1a and Supplementary Tables 1 and 2). We adapted pharmacoscopy 
(PCY), an ex vivo image-based drug screening platform previously 
validated in functional precision medicine trials for hematological 
malignancies32–35, for the functional characterization of patient glioblas-
toma tissues. For both solid tumors and blood cancers, PCY identifies 
‘on-target’ drug responses by quantifying the drug-induced specific 
reduction of cancer cells relative to non-malignant TME cells based on 
immunofluorescence (IF) staining. We, therefore, first set out to define 
and validate a clinically relevant marker profile that would capture the 
majority of glioblastoma cells across patient samples.

Glioblastoma cells adopt a spectrum of malignant cellular 
programs recapitulating neural differentiation, ranging from neu-
ral progenitor-like GSCs to more mature astrocyte-like cellular 
states3,4,9,14,15,36. As a consequence, neural progenitor markers (for 
example, Nestin) and astrocyte lineage markers (for example, S100B 
and GFAP) are widely used to characterize patient tumors19,21,22,24,37–39, 
with Nestin+ GSCs representing a treatment-resistant subpopulation 
that sustains long-term tumor growth9–11,16.

Analysis of 25,510 single-cell transcriptomes spanning three 
independent single-cell RNA sequencing (scRNA-seq) datasets and 
22 patients (including four from this study) confirmed that glioblas-
toma cells defined by Nestin/S100B expression and absence of immune 
marker CD45 capture the majority of malignant cells (Fig. 1b,c and 
Extended Data Fig. 1a–d). These cells displayed the highest expression 
of markers associated with malignancy (for example, SOX2, CD133, EGFR 
and Ki67) in comparison to CD45+ immune cells and cells triple-negative 
for Nestin, S100B and CD45 (referred to as ‘other’ cells; Fig. 1b and 
Extended Data Fig. 1d). Glioblastoma cells also expressed the highest 
level of markers attributed to the neural properties of glioblastoma, 
such as synaptic circuit integration, neuronal activity-regulated par-
acrine signaling and tumor microtube formation (Fig. 1b and Extended 
Data Fig. 1d). Additional IF staining of patient samples confirmed that 
Nestin+ cells had higher expression of these malignancy and neural 
properties-associated markers (Extended Data Fig. 1e,f). Furthermore, 
inferred chromosomal copy number alteration (CNA) analysis of hall-
mark genetic alterations in glioblastoma confirmed the Nestin/S100B 
and CD45− marker definition to capture the majority of malignant 
cells of patients in which these hallmark CNAs were detected (Fig. 1c). 
Lastly, cell-type-specific enrichment analysis of the triple-negative 
‘other’ cells revealed additional TME cell types, including CD45-low 
tumor-associated macrophages/microglia, fibroblasts and stromal 
cells (Extended Data Fig. 1g,h).

To evaluate the clinical concordance of glioblastoma drug 
response profiling defined by this marker panel, we measured ex vivo 
responses to first-line and second-line glioblastoma chemotherapies 
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NADs’ or ‘PCY-hit NADs’; mean PCY score > 0.03; Fig. 2b,g and Supple-
mentary Table 2). The top-ranking NAD was the anti-depressant vortiox-
etine (rank 5 overall; Fig. 2c,g and Extended Data Fig. 2h), which showed 
significant ex vivo efficacy in 18 out of 27 patients (66.7%). Other clini-
cally attractive NADs included paroxetine (rank 15, 44.4% of patients) 

and fluoxetine (rank 19, 40.7% of patients), both anti-depressants of 
the selective serotonin reuptake inhibitor (SSRI) class, as well as the 
anti-psychotic brexpiprazole (rank 17, 48.1% of patients) (Fig. 2c,g). 
However, not all identified top NADs were clinically attractive, con-
sidering the reported side effects of cannabinoid receptor blocker 
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Fig. 1 | Clinical concordance of single-cell ex vivo drug profiling for 
glioblastoma. a, Prospective multimodal profiling of a glioblastoma patient 
cohort (n = 27 patients) and diverse glioblastoma disease models. Patient 
numbers are indicated per data type. b, Percent of cells expressing each gene 
(y axis) per subpopulation (x axis; n = 22 patients; data points; shape indicates 
scRNA-seq dataset). P values were calculated by two-tailed Wilcoxon test. Box 
plots show 25th–75th percentiles with a line at the median; whiskers extend to 
1.5 times the interquartile range. c, Inferred CNA analysis based on scRNA-seq 
datasets in b. Matched patient samples are connected by gray lines. Patients 
with less than 5% of cells with detected CNAs are excluded. d, Overview of 
the prospective cohort (n = 27 patients). See Supplementary Table 1 for full 
cohort information. conf., confidence. e, Real-time image-based ex vivo drug 
screening (PCY) workflow of glioblastoma patient samples. f, Example IF image 
of a glioblastoma patient sample (P040; scale bar, 60 µm). g, Baseline cellular 
composition across the prospective glioblastoma cohort measured by PCY. 
Underlines indicate patients with recurrent glioblastoma. h, GSD (rows; n = 3 

drugs) response across patient samples (columns). GSD response is averaged 
across concentrations for TMZ and lomustine/carmustine (CCNU and BCNU, 
respectively). i,j, Stratification of newly diagnosed glioblastoma patient 
survival based on ex vivo TMZ sensitivity of (Nestin+/S100B+ and CD45−) cells 
(blue, TMZ sensitive; red, TMZ resistant). Kaplan–Meier survival curves are 
compared using the log-rank (Mantel–Cox) test, and the optimal TMZ PCY 
score cutpoint to stratify patients was determined by maximally selected 
rank statistics. i, PFS of the prospective glioblastoma cohort (n = 16 annotated 
patients) stratified by TMZ PCY score (100 µM). Tick mark indicates ongoing 
response. j, PFS (left) and OS (right) of the retrospective cohort (n = 18 patients) 
stratified by mean TMZ PCY score. k, TMZ PCY scores (dots; n = 34 patients 
across both cohorts) stratified by clinically reported median PFS7 to first-line 
TMZ chemoradiotherapy. Wilcoxon test. l, TMZ (50 µM) PCY scores across both 
cohorts (dots; n = 41 patients) stratified by MGMT promoter methylation status. 
Wilcoxon test. Box plots as in b. GBM, glioblastoma.
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Fig. 2 | PCY identifies repurposable NADs with tumor-intrinsic anti-
glioblastoma activity. a, PCY overview for screening neuroactive (NAD) and 
oncological (ONCD) drug libraries across the prospective patient cohort (n = 27 
patients) ex vivo. b, Volcano plot of all measured glioblastoma PCY scores and 
corresponding significance (FDR-adjusted q value, Student’s two-tailed t-test). 
‘On-target’ responses (blue; PCY score > 0, −log10(q value) > 1.3) per drug 
library are indicated. c, Drug ranking (n = 132 drugs) by mean PCY scores across 
patients. alkyl., alkylation; rep., replication. d, Relationship between clinical 
parameters and PCY score across NADs and ONCDs. Each datapoint represents 
a [clinical parameter:drug] association. e, As in d but for genetic alterations. 
d,e, Colored by clinical parameter/gene, and shape denotes drug category. 
Red dashed line, significance threshold. Adjusted P values were calculated 

by Wilcoxon test for two groups and by Kruskal–Wallis test for three or more, 
excluding cases where any category was present in fewer than three patients. f, 
Example patient sample image (P040; scale bar, 100 µm), PDC line (P040.PDC; 
scale bar, 100 µm), adherent glioblastoma cell line (LN-229; scale bar, 150 µm) 
and glioblastoma-initiating cell line (ZH-562; scale bar, 250 µm). Stains are 
indicated in their respective colors. g, NAD score matrix (n = 67 drugs; columns) 
across patient samples (n = 27; rows), PDC lines (n = 3; patient ID followed by ‘.C’) 
and glioblastoma cell lines (n = 4). Drug score (color scale) indicates the PCY 
score for patient samples and PDC lines (one-tailed t-test) or viability score for 
glioblastoma cell lines (two-tailed t-test). Values beyond color scale limits were 
set to either minimum or maximum values. For clinical and drug annotations, see 
Supplementary Tables 1 and 2. *FDR-adjusted P < 0.05.

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-024-03224-y

rimonabant (rank 6) and anti-psychotic zotepine (rank 7), yet they may 
provide mechanistic insights. These PCY-based NAD responses were 
reproduced using different ways to detect apoptotic cells (Extended 
Data Fig. 2i–k and Methods) and were robust to tumor content, assay 
timepoint and culture condition (Supplementary Fig. 1). Exploring 
their clinical and pharmacogenetic associations revealed higher ex 
vivo sensitivity to brexpiprazole in males (Fig. 2d and Extended Data 
Fig. 2f) and higher sertindole sensitivity in patients with FGFR2 copy 
number loss (Fig. 2e and Extended Data Fig. 2g).

We tested the NAD library in additional glioblastoma disease mod-
els, including PDCs (n = 3 lines; Fig. 2f,g) and commonly used 2D and 
3D glioblastoma cell lines (n = 4 lines; Fig. 2f,g). Top NADs effectively 
reduced fractions of Nestin+ cells and metabolic activity in PDCs, total 
cell numbers in adherent cell lines (LN-229 and LN-308) and spheroid 
size in glioblastoma-initiating cell lines (ZH-161 and ZH-562), with con-
firmed concentration–response relationships (Fig. 2g, Extended Data 
Fig. 3a–d and Supplementary Fig. 2). The efficacy of anti-depressants 
vortioxetine, paroxetine and fluoxetine were exceptionally consist-
ent, where vortioxetine was the top-ranking NAD across all model 
systems tested (Fig. 2g). Thus, by comprehensively screening across 
glioblastoma patient surgery material and model systems, we identi-
fied a set of repurposable NADs with potent anti-glioblastoma efficacy. 
The consistency of these top NADs across model systems, even in the 
absence of the TME and synaptic circuitry, indicates the presence of 
one or more tumor-intrinsic neural vulnerabilities.

Divergent functional dependencies on NAD targets
The NADs with anti-glioblastoma efficacy represented diverse drug 
classes, indicating that canonical mode of action did not explain their 
efficacy (Fig. 3a). Among our tested serotonin and dopamine pathway 
modulators, for example, only four out of 11 anti-depressants (36%) and 
six out of 16 anti-psychotics (38%) exhibited anti-glioblastoma activity 
in patient samples (Extended Data Fig. 4a). Such drug classifications, 
however, simplify the polypharmacological drug–target profiles of 
NADs. Most NADs act on multiple primary target genes (PTGs), includ-
ing ion channels and G-protein-coupled receptors (GPCRs), whose 
expression remains a largely unexplored dimension of glioblastoma 
heterogeneity.

To this end, we evaluated NAD PTG expression profiles across the 
three glioblastoma scRNA-seq datasets (Fig. 3b,c and Extended Data 
Fig. 4b,c)4,40. Among PTGs with reported biochemical interactions 
with NADs (based on the Drug Targets Commons (DTC)41), expres-
sion of potassium channels, glutamate receptors and cannabinoid 
receptors were enriched in glioblastoma cells, whereas other target 
classes showed broader expression patterns (Extended Data Fig. 4b). 
To characterize PTG expression heterogeneity, we calculated neural 
specificity and patient specificity scores (Fig. 3b, Extended Data Fig. 4c, 
Supplementary Table 3 and Methods), where a higher neural specificity 
indicates relative enrichment in neural lineage cells (range −1 to 1), and a 
higher patient specificity (range 0 to 1) indicates more patient-specific 
expression. Gene transcripts encoding ion channels and receptors 
with high neural specificity included the calcium signaling modulator 
SIGMAR1 and cannabinoid receptor CNR1. Both had considerably lower 
patient specificity than oncogenic RTKs EGFR and PDGFRA, despite 
similar detection levels (Fig. 3c and Supplementary Table 3), highlight-
ing consistent pan-patient expression of NAD targets in glioblastoma.

We tested the dependency on these NAD PTGs by performing 
a reverse genetic screen in LN-229 glioblastoma cells (n = 59 genes; 
Fig. 3d, Extended Data Fig. 4d and Supplementary Table 4) with similar 
PTG expression and NAD sensitivities to patient samples (Figs. 2g and 
3d). Knockdown of nine PTGs significantly decreased cell viability 
(Fig. 3d and Extended Data Fig. 4d), of which lower expression levels 
of DRD1, DRD2, HTR3A and TACR1 were also associated with better 
patient survival in The Cancer Genome Atlas (TCGA) glioblastoma 
cohort (Extended Data Fig. 4e). However, these PTG dependencies 

were predominantly targeted by NADs without anti-glioblastoma 
activity by PCY. For example, only five of the 16 DRD1-targeting NADs, 
and only one out of 11 HTR3A-targeting NADs, were PCY-hits (Fig. 3e). 
Therefore, although presenting possible neural vulnerabilities, these 
genetic PTG dependencies are unlikely to explain the anti-glioblastoma 
activity of our top NADs.

Drug–target network convergence predicts NAD efficacy
Despite their chemical and primary target diversity, top NADs may con-
verge upon common downstream signaling pathways. To test this, we 
developed an interpretable machine learning approach that searches 
for ‘convergence of secondary drug targets analyzed by regularized 
regression’ (COSTAR). COSTAR is designed to identify the minimal 
drug–target connectivity signature that is maximally predictive of 
patient drug efficacy (Methods).

We extended the drug–target search space to include PTGs with 
any bioactivity annotated by DTC (extended primary target genes 
(ePTGs); Fig. 4a) and their secondary target genes (STGs) based on 
protein–protein interactions (STRING database; Fig. 4a). This resulted 
in a drug–target connectivity map, or ‘COSTAR constellation’, of all 
DTC-annotated drugs in our NAD and ONCD libraries (n = 127 of 132 
drugs) with 975 ePTGs, 10,573 STGs and 114,517 edges (Fig. 4b). Using 
logistic LASSO regression, we trained a model that identifies the mini-
mal set of STGs that maximally discriminates PCY-hit drugs (n = 30; 
top 15 from both drug libraries) from PCY-negative drugs (n = 97) in a 
cross-validation setting (Fig. 4c and Extended Data Fig. 5a). Thereby, 
COSTAR converged upon the minimal connectivity signature that was 
predictive of ex vivo anti-glioblastoma drug efficacy (Fig. 4a–e and 
Extended Data Fig. 5a–c). COSTAR identified a signature that classified 
the 127 drugs with 92.1% accuracy, correctly predicting 20 of 30 PCY-hit 
drugs and 96 of 97 PCY-negative drugs (Fig. 4d).

The COSTAR connectivity signature linked PCY-hit NADs to the 
secondary target BTG2, predominantly through JUN and TP53 ePTGs 
(Fig. 4e and Extended Data Fig. 5b,c). BTG2 and TP53 are both tumor 
suppressors that control cell cycle and differentiation, whereas JUN is a 
member of the AP-1 transcription factor (TF) family that, in a neural con-
text, regulates gene expression and apoptosis in response to stimuli, 
such as neural activity or insult42. Conversely, most PCY-hit ONCDs were 
connected to the secondary target AP1S2, a protein involved in clathrin 
coat assembly, through the cyclin G-associated kinase GAK (Fig. 4e 
and Extended Data Fig. 5b,c). Taken together, this reveals therapeutic 
pathway convergence on AP-1 TFs and cell cycle regulation as a unique 
signature predictive of anti-glioblastoma activity of NADs.

COSTAR can compute the hit probability of any annotated com-
pound by matching its drug–target profile to the learned connec-
tivity signature. To evaluate the predictive power of the COSTAR 
signature and find additional NAD candidates, we screened 1,120,823 
DTC-annotated compounds in silico and experimentally validated 
23 top-scoring and 25 bottom-scoring compounds (COSTAR-HIT 
and COSTAR-NEG, respectively; Fig. 4f and Supplementary Data 2). 
Of these, only the COSTAR-HITs were linked to the secondary target 
BTG2, primarily through JUN (Fig. 4g,h). We tested all 48 compounds 
across four glioblastoma patient samples and observed excellent 
agreement between COSTAR predictions and PCY scores (mean area 
under the curve (AUC) = 0.94; Fig. 4i,j). The confirmed COSTAR-HITs 
again represented diverse NAD classes, including the anti-psychotic 
trifluoperazine, anti-parkinsonian ethopropazine and anti-depressant 
sertraline (Fig. 4i). These results substantiate AP-1/BTG pathway con-
vergence as a therapeutic signature that predicts NADs with ex vivo 
anti-glioblastoma activity.

Altered tumor neurophysiology induces an anti-proliferative 
program
The COSTAR signature suggests a common gene regulatory network 
(GRN) underlying the activity of PCY-hit NADs. To confirm this, we 
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measured the transcriptional response of LN-229 cells at 6 h and 22 h 
to 19 select drugs by DRUG-seq43 (Fig. 5a–d, Extended Data Fig. 6a–g 
and Supplementary Table 2). In alignment with COSTAR, differential 
gene expression analysis revealed a common AP-1 and BTG signature 
induced by diverse PCY-hit NADs (Fig. 5b,d and Extended Data Fig. 6c). 
This involved rapid and sustained upregulation of eight AP-1 TFs, includ-
ing immediate early genes (IEGs) JUN and c-FOS, known to mediate 
neural activity and apoptosis42,44–46, and stress-induced AP-1 TFs ATF3 
and ATF4 (Fig. 5b,d and Extended Data Fig. 6c). Conversely, downregu-
lated AP-1 factors included ATF5 and ATF6B, shown to promote glio-
blastoma cell survival and radioresistance, respectively47,48, whereas 
FOSL1, implicated in response to irradiation in glioblastoma, showed 
no upregulation49 (Extended Data Fig. 6e). Additional upregulated 
IEGs NR4A1, EGR1 and ARC and MAPK pathway enrichment further 
implicated neural activity-like signaling (Fig. 5b and Extended Data 
Fig. 6d). BTG1, a homolog of BTG2, was among the top 20 most sig-
nificantly upregulated genes (Fig. 5b,d and Extended Data Fig. 6c), 
whereas BTG2 was particularly induced in response to vortioxetine 
(Fig. 5d). In contrast, tested ONCDs, including first-line chemotherapy 
TMZ, did not elicit this global AP-1/BTG response (Fig. 5d and Extended 
Data Fig. 6c). Transcription factor binding-site (TFBS) enrichment 
analysis of the NAD-induced genes at 6 h revealed AP-1, ATF and CREB, 
a calcium-activated regulator of AP-1 transcription50, as the most sig-
nificantly enriched motifs present among 60% of upregulated genes 
(Fig. 5b,c and Extended Data Fig. 6f). At 22 h, expression of AP-1 fac-
tors was sustained, and forkhead TF family motifs, known to regulate 

long-term cell differentiation succeeding AP-1 (ref. 51), were enriched 
among the upregulated genes (Extended Data Fig. 6f).

AP-1 activation and IEG expression are typically preceded by 
Ca2+-dependent signaling in neural lineage cells44,50,52,53. We, there-
fore, measured both extracellular Ca2+ influx as well as endoplasmic 
reticulum (ER) Ca2+ store release by high-throughput FLIPR assay 
(n = 17–18 drugs; Supplementary Table 2). Although none of the tested 
PCY-negative NADs and PCY-hit ONCDs triggered Ca2+ influx, five out 
of eight PCY-hit NADs, including anti-depressants vortioxetine, parox-
etine and fluoxetine, elicited immediate and strong extracellular Ca2+ 
influx, not involving ER Ca2+ store release (Fig. 5e,f and Extended Data 
Fig. 7a). These results could be recapitulated in a PDC culture (P050.C; 
Extended Data Fig. 7b).

We delineated the single-cell Ca2+ dynamics elicited by vortiox-
etine, the most potent preclinical candidate, by live-cell Ca2+ imaging 
across four PDC cultures and two cell lines (n = 3,561 cells; Supple-
mentary Video 1). Across all, vortioxetine robustly induced Ca2+ influx 
(Extended Data Fig. 7c), with the PDC cultures displaying baseline Ca2+ 
oscillations reminiscent of recent in vivo observations (Fig. 5g and 
Extended Data Fig. 7d,e)21,23,24. Vortioxetine increased the fraction of 
oscillating glioblastoma cells (Fig. 5g,h) and, for baseline oscillating 
cells, increased both their maximum peak amplitude (in 3/4 PDC lines) 
and mean peak amplitude (2/4 PDC lines) (Extended Data Fig. 7f). Elec-
trophysiological characterization of vortioxetine response in LN-229 
and LN-308 lines revealed LN-229-specific depolarization of the resting 
membrane potential (Extended Data Fig. 7g) and significant changes in 
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See also Methods. d, COSTAR training model performance compared to PCY-
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target mapping. Target genes with absolute COSTAR LASSO coefficients greater 
than 0.1 are displayed. i, Experimental ex vivo validation by PCY of COSTAR-HIT 
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glioblastoma patient samples (rows) including positive (PCY-hits; pink; n = 3) 
and negative (PCY-negative; dark gray; n = 1) control drugs. Heatmap color scale 
indicates the PCY score of glioblastoma cells. One-tailed t-test; *FDR-adjusted 
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the current-voltage characteristics (I-V curves) in both lines (Extended 
Data Fig. 7i,j). These results demonstrate that NADs and, in particular, 
vortioxetine rapidly alter glioblastoma neurophysiology preceding 
IEG/AP-1 upregulation.

Downstream of AP-1 upregulation, genome-wide mapping of tran-
scriptional regulatory networks (PathwayNet)54 identified members 
of the AP-1 TF family to directly mediate BTG1/2 tumor suppressor 
gene expression (Fig. 5i). Furthermore, a strong correlation between 
the degree of induction of the COSTAR signature and the ex vivo 
anti-glioblastoma efficacy across NADs provided circumstantial evi-
dence for a causal role of this GRN (R = 0.72, P = 1.4 × 10−5; Extended 
Data Fig. 6g). We, therefore, performed BTG1/2 and JUN loss-of-function 
experiments (Fig. 5j,k and Extended Data Fig. 7j), after confirming 
knockdown efficiency (Extended Data Fig. 7j). Particularly BTG1 
knockdown accelerated LN-229 cell growth, measured by live-cell 
and end-point imaging (Fig. 5j,k and Supplementary Video 2). Fur-
thermore, vortioxetine treatment after gene silencing revealed that 
BTG1 knockdown attenuated vortioxetine’s anti-glioblastoma efficacy 
(Fig. 5k). Thus, vortioxetine engages an anti-proliferative program that 
includes AP-1/BTG-driven tumor suppression (Fig. 5l).

Robust AP-1 induction across molecular regulatory layers
To profile the molecular response to vortioxetine, we performed deep 
transcriptomic, proteomic and phosphoproteomic profiling at 3–6 
timepoints in LN-229 cells (Extended Data Fig. 8a–f). Rapid NH-2 ter-
minal JUN phosphorylation after vortioxetine treatment was central 
to several differentially phosphorylated pathways, including the stress 
response pathway, mRNA processing and clathrin-mediated endocy-
tosis (Extended Data Fig. 8f). Consistently, several AP-1 TFs, BTG1 and 
associated pathways, including MAPK signaling, ER stress and DNA 
damage response, were upregulated at both the RNA and protein level 
across all timepoints (Extended Data Fig. 8a,c,e). Conversely, vorti-
oxetine treatment downregulated oncogenic RTKs, including EGFR, 
NTRK2 and PDGFRA (Extended Data Fig. 8a).

Next, we performed scRNA-seq on patient cells after 3 h of ex vivo 
vortioxetine or DMSO treatment, revealing four cell clusters across the 
1,736 single-cell transcriptomes (patient P024; Fig. 6a,b and Extended 
Data Fig. 9a,b). Clusters 1–3 represented glioblastoma cells expressing 
Nestin, Ki67, EGFR and VEGFA, with cluster 1 showing the most aggres-
sive signature and highest inferred fraction of cells in the G2M cell cycle 
phase (Extended Data Fig. 9c). Analyzing the transcriptional response 
to vortioxetine treatment revealed a reduction of inferred G2M phase 
cells (Extended Data Fig. 9c) and confirmed glioblastoma-specific 
induction of AP-1 TFs and effector genes in patient cells (Fig. 6b).

Profiling the vortioxetine response at the AP-1 protein level across 
patient samples revealed that the patient response heterogeneity 
correlated with the degree of AP-1 upregulation (across c-FOS, JUND, 

ATF4 and the AP-1 effector HOMER1; Fig. 6c,d). Consistent with the 
scRNA-seq analysis, AP-1 induction was specific for glioblastoma cells, 
whereas immune cells did not exhibit AP-1 induction and showed lower 
baseline AP-1 expression (Extended Data Fig. 9d). Thus, this single-cell 
analysis across patients identified AP-1 induction as a predictor of vor-
tioxetine efficacy and validated the glioblastoma-specific therapeutic 
convergence of NADs on AP-1/BTG-driven tumor suppression across 
modalities and patient heterogeneity.

Anti-depressant vortioxetine is the strongest preclinical 
candidate
Finally, to evaluate the in vivo anti-glioblastoma efficacy of our top 
NADs, we tested PCY-hit NADs spanning different drug classes in two 
distinct orthotopic human xenograft glioblastoma mouse models (LN-
229 and ZH-161) across four independent preclinical trials (Trials I–IV; 
Fig. 6e–h and Extended Data Fig. 10a,b). Standard-of-care TMZ was 
included as positive control, and PCY-negative NADs paliperidone or 
citalopram and vehicle were negative controls. Treatment doses were 
determined a priori based on literature and clinical evidence.

Vortioxetine was consistently the most effective PCY-hit NAD 
in vivo (in 4/4 trials), showing significant survival benefit, similar to 
TMZ (Fig. 6e,f). Furthermore, vortioxetine treatment significantly 
reduced tumor size in vivo measured by magnetic resonance imag-
ing (MRI) of ZH-161 transplanted mice after 15 d (Trial II; Extended 
Data Fig. 10a,b), and vortioxetine displayed multifaceted anti-tumor 
effects in vitro: it reduced glioblastoma growth, invasiveness and clo-
nogenic survival across 2D and 3D glioblastoma cell lines (Extended 
Data Fig. 10c–f). Brexpiprazole was the second-best PCY-hit NAD in vivo 
(in 2/3 trials), and other NADs conferred significant survival benefit in 
single trials (Fig. 6e). Consistent with our ex vivo PCY results, the nega-
tive controls paliperidone (in 2/2 trials; Fig. 6e) and citalopram (single 
trial; Fig. 6f) showed no survival benefit. The confirmed lack of efficacy 
of anti-depressant citalopram, in particular, highlights that serotonin 
modulation alone does not confer anti-glioblastoma efficacy (Trial IV; 
Fig. 6f). In this direct dose comparison, only vortioxetine lowered Ki67 
levels in situ, reduced tumor burden and increased survival (Fig. 6f–h 
and Extended Data Fig. 10g,h).

The striking consistency of our patient ex vivo and mouse in vivo 
results demonstrates strong translatability of PCY-based NAD dis-
covery and confirms vortioxetine as the most promising clinical 
candidate. To prepare its clinical translation, we further tested the 
combination of vortioxetine with either first-line or second-line 
standard-of-care chemotherapies for glioblastoma, TMZ and lomus-
tine (CCNU) in vivo (Trial V: ZH-161; Fig. 6i). All three single agents 
significantly prolonged survival, with vortioxetine results now con-
firmed in five out of five in vivo trials (Fig. 6e,f,i). Compared to TMZ 
or CCNU single agents, the combination of vortioxetine with either 

Fig. 5 | NADs alter glioblastoma neurophysiology and engage an anti-
proliferative AP-1/BTG GRN. a, Workflow for DRUG-seq43 of drug-treated LN-229 
cells. b, Transcriptional response of PCY-hit NAD-treated cells compared to NEG-
treated cells (6 h; as in a). Significant genes by two-tailed Wald test (DESeq2) in 
light gray or colored according to their gene annotations (see legend).  
c, TFBS enrichment analysis of significantly upregulated genes in b. Circles, TF 
annotations. d, log2(fold change) of AP-1 TF and BTG family gene expression 
(columns) significantly upregulated by 6-h PCY-hit NAD (rows) treatment 
compared to NEG. e, Calcium response (ΔF/F0; y axis) over time (x axis) of LN-229 
cells upon drug treatment. Timeline depicts FLIPR assay setup. Representative 
traces showing ΔF/F0, change in fluorescence intensity relative to baseline for 
NAD (left) and ONCD (right) drug conditions. f, Fold change in extracellular 
calcium influx upon drug treatment relative to DMSO measured as in e (n = 8 
assay plates; n = 17 conditions; n = 18–30 wells per drug; DMSO, n = 47 wells). 
Asterisks in parentheses, median [Ca2+ fold change] < 0. Black line, median value. 
g, Single-cell-resolved calcium response (ΔF/F0) measured by ratiometric Fura-2 
imaging over time at baseline (BASE) and after vortioxetine treatment (+VORT; 
20 µM) across six cell lines (n = 3,561 cells; see also Extended Data Fig. 7c–f). 

Panels depict single-cell calcium responses (rows) over time (columns), stratified 
by the presence (Ψ) or absence (Ø) of calcium oscillations at baseline and VORT 
treatment. Representative single-cell traces (n = 4 per heatmap) are depicted 
below. h, Percent of cells displaying calcium oscillations (x axis) at baseline 
(gray) and after VORT treatment (purple) across cell lines (y axis; n = 6). Dots, 
independent experiments (n = 4–6 experiments per line). Paired two-tailed t-test. 
i, BTG1/2 transcriptional regulation (PathwayNet54). Black nodes, query genes; 
gray nodes, top 13 inferred TF interactions. Edge colors, relationship confidence. 
j, LN-229 confluency by live-cell imaging (y axis) over time (x axis) after gene 
knockdown. Mean (line) and standard deviation (bands) of n = 4 replicate wells 
are shown. k, LN-229 cell counts (y axis) after gene knockdown (columns) at 
baseline (left) and vortioxetine treatment (10 µM; right; n = 9–14 replicate wells 
per condition, n = 2 experiments). Normalized to FLUC at baseline. a,e,f, Drug 
abbreviations are in Supplementary Table 2. f,k, Two-tailed t-test. P values were 
adjusted for multiple comparisons by Holm correction. l, Summary diagram by 
which NADs target glioblastoma. CRE, cAMP response element; CKI, cyclin-
dependent kinase inhibitor; FKH, forkhead binding motif. Box plots as in Fig. 1b. 
NS, not significant; PCY-HIT, PCY-hit; PCY-NEG, PCY-negative.
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drug provided a further median survival increase of 20–30%, with 
four out of 12 mice (25%) displaying long-term survival (Fig. 6i). The 
added survival benefit conferred by these neuro/chemo combination 
therapies supports the mechanistic complementarity of neuroac-
tive AP-1/BTG tumor suppression with the current standard of care 

targeting genome integrity. Lastly, we identified that patients with 
low Ki67 levels and absence of EGFR alterations were the least likely to 
benefit from vortioxetine treatment ex vivo (Extended Data Fig. 10i), 
offering a patient stratification strategy for this strong preclinical 
candidate (Fig. 6j).
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Fig. 6 | The anti-depressant vortioxetine confers significant survival benefit 
across preclinical trials and synergizes with standard-of-care glioblastoma 
treatments. a, scRNA-seq expression of select marker genes in patient sample 
P024. Cluster IDs are based upon UMAP clusters in Extended Data Fig. 9a. Black 
lines, median. b, Differentially expressed AP-1 TFs and effector gene ARC per 
scRNA-seq cluster in a, upon vortioxetine (VORT) treatment relative to DMSO. 
Circle sizes, −log10(adjusted P value); color scale, VORT-induced log2(fold change 
(FC)) compared to DMSO-treated cells per cluster. c, Example single-cell image 
crops from patient P040 of Nestin+ (yellow) cells after VORT treatment (+; 20 µM) 
and DMSO at 24 h stained with different AP-1 factors (red) and DAPI (blue). Scale 
bar, 15 µm. d, VORT ex vivo response (x axis; PCY score) versus AP-1 induction in 
Nestin+ glioblastoma cells by IF (y axis; log2(fold change) in mean intensity relative 
to DMSO) across patient samples (n = 11) at 24 h after VORT treatment (10 µM and 
20 µM; VORT conc.). Pearson’s linear correlation coefficients and two-tailed  
P values are indicated. e, Survival analysis across three independent in vivo trials—
Trial I: LN-229, Trial II: ZH-161 and Trial III: ZH-161—each with n = 6–7 tumor-bearing 

mice per treatment group and n = 7 treatments per trial. Doses are denoted in 
parentheses, and * indicates drugs used in a subset of the three trials. f, Survival 
analysis of in vivo Trial IV: ZH-161-iRFP720 tumor-bearing mice (n = 6 mice per 
treatment group). g, Representative MRI images of ZH-161-iRFP720 transplanted 
mice (columns; Trial IV; n = 4 mice) 38 d after tumor implantation (n = 3 drugs) 
with tumor perimeters indicated (yellow). h, Tumor perimeters of drug-treated 
mice in g, at multiple timepoints after tumor implantation by MRI. One-way 
ANOVA with adjusted P value from Tukey’s multiple comparisons test at day 38. 
i, Survival analysis of in vivo Trial V: ZH-161 tumor-bearing mice (n = 5–6 mice per 
group). j, Preclinical evidence for the top PCY-hit NAD VORT across modalities. 
AP-1 Val., AP-1 validation samples (n = 10 and n = 1 overlap with COSTAR); COSTAR, 
COSTAR validation samples (n = 4); Pros. GBM, prospective patient cohort (n = 27). 
*, among tested drugs and timepoints. e,f,h, Survival plotted as Kaplan–Meier 
curves and P values (colored by drug) calculated using log-rank (Mantel–Cox) test. 
Censored mice are denoted as tick marks. PCY-HIT, PCY-hit.
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Discussion
Here we present a therapeutic single-cell map across patient samples 
that reveals the molecular NAD landscape of glioblastoma. Driving this 
discovery is the high-throughput functional evaluation of glioblastoma 
tissue shortly after surgery across heterogeneous patient cohorts by 
PCY. In line with the prior successful use of PCY to guide patient treat-
ment for blood cancers and growing community efforts in functional 
precision oncology32,33,35,55,56, our results indicate the feasibility of using 
PCY as a drug discovery and personalized treatment selection platform 
for hard-to-treat solid tumors.

Our prospective ex vivo testing of repurposable drugs expands 
the investigation of NADs57–59, patient-derived explants27,38,39,60–62 and 
molecular predictors of response to accelerate clinical translation 
of therapeutic candidates for glioblastoma. Near real-time drug 
testing further addresses limitations of retrospective cohort stud-
ies examining coincidental NAD use, which can be confounded by 
the time of prescription and grouping of multiple drugs. Expansion 
to larger cohorts and consideration of other important aspects of 
glioblastoma etiology, including the metabolic state30,63, spatial 
tumor organization64,65 and the neuron–glioma interface18,21–23,25, will 
further consolidate our understanding of patient heterogeneity and 
treatment response.

Despite many possible neural vulnerabilities, our interpretable 
machine learning (COSTAR) identified a convergent drug–target con-
nectivity signature predictive of anti-glioblastoma efficacy across 
drugs. COSTAR effectively applies Occam’s razor to the collective 
biochemical drug–protein–protein interaction network, offering a 
conceptual framework likely applicable to other cancers and drug 
discovery efforts. Using COSTAR, deep multi-omic profiling and func-
tional genetics, we uncovered NAD-specific convergence through AP-1 
activity on BTG-mediated tumor suppression. However, the chemical 
properties leading to AP-1 upregulation remain to be identified, and 
polypharmacological mechanisms likely contribute to the integrated 
effect of individual NADs.

Previous studies demonstrated the role of neuronal input in regu-
lating glioblastoma growth at the brain–tumor interface, highlighting 
the influence of the TME in modulating the neural behavior of the 
tumor18,21–23,25. In the present study, we uncovered a tumor-intrinsic 
neural vulnerability in glioblastoma, offering a therapeutic win-
dow that enables direct targeting of tumor neurophysiology inde-
pendent of neuronal input. In cancers, AP-1 factors were initially 
discovered as oncogenes, although an increasing number of studies  
report context-dependent anti-oncogenic functions of AP-1 fac-
tors. In contrast, for neurons and other neural lineage cells, IEG  
expression of AP-1 factors is typically a hallmark of neural activity 
or insult42,44–46.

In the context of glioblastoma cells, we now report that diverse 
NADs—particularly the anti-depressant vortioxetine—target this neu-
ral activity-like signaling, triggering a strong neurophysiological and  
transcriptional response that leads to rapid glioblastoma cell death. 
Vortioxetine’s potency was orthogonally demonstrated across 
modalities, with an on-target ex vivo efficacy observed in 75% of 
patients (Fig. 6j). Moving forward, vortioxetine in combination with 
standard-of-care chemotherapeutics should be tested in controlled 
clinical trials, potentially guided by molecular or functional patient 
stratification. Treating glioblastoma tailored to the cellular history 
and lineage of the cancer, in addition to its unstably transformed state, 
offers hope for this devastating disease.
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Methods
Patient sample processing
Ethics statement and patient cohort. Adult patients with IDH-wildtype 
glioblastoma and CNS World Health Organization (WHO) grade 4 
according to the 2021 WHO classification of CNS tumors treated 
either at the University Hospital of Zurich or the Cantonal Hospital 
St. Gallen provided informed consent to take part in the study with 
approval by the institutional review board (ethical approval number 
KEK-StV-Nr.19/08; BASEC numbers 2019-02027 and 2021-00652). There 
was no limit on tumor size for the human samples included in the study 
and no selection bias of the enrolled patients. Clinical characteristics 
of the prospective and retrospective patient cohorts, including clinical 
parameters, experiment inclusion, sex, age and genetics summary, can 
be found in Supplementary Table 1 and Supplementary Data 1. The pro-
spective cohort consists of patients where fresh tissue was processed 
directly within 4 h after surgery (n = 27 patients for drug screening 
and an additional n = 17 patients for validation experiments). For PFS 
analysis of the prospective cohort, only patients with newly diagnosed 
glioblastoma who received radiotherapy and TMZ chemotherapy were 
included. The retrospective cohort (n = 18 patients) consists of patients 
for whom bio-banked tissue was available and who received mainte-
nance TMZ, with OS documented as a clinical endpoint. Retrospective 
samples were selected to cover a broad spectrum of PFS outcomes and 
were further selected based on quality control measures, including cell 
viability, cell number and the amount of debris present in the sample.

Patient sample dissociation for ex vivo drug screening. Surgically 
removed tissue samples were first washed with PBS and cut using 
single-use sterile scalpels. Subsequent dissociation was performed 
in reduced serum media (DMEM media, no. 41966, with 2% FBS no. 
10270106, 1% pen–strep no. 15140122 and 25 mM HEPES no. 15630056, 
all from Gibco) supplemented with Collagenase IV (1 mg ml−1) and 
DNaseI (0.1 mg ml−1) using a gentle MACS Octo Dissociator (Miltenyi 
Biotec, 130-096-427) for maximally 40 min. Homogenates were filtered 
through a 70-µm cell strainer (Sigma-Aldrich, CLS431751) and washed 
once with PBS containing 2 mM EDTA. Myelin and debris removal was 
performed by a gradient centrifugation of the cell suspension in a 
7:3 mix of PBS:Percoll (Sigma-Aldrich, P4937), with an additional PBS 
wash. In case the cell pellet visibly contained a notable portion of red 
blood cells (RBCs), RBC lysis was performed with 1× RBC lysis buffer 
(BioLegend, 420301) at room temperature for 10 min before the PBS 
wash. Subsequently, cells were resuspended in reduced serum media, 
filtered once more through a 70-µm cell strainer and counted using a 
Countess II Automated Cell Counter (Invitrogen). In case sufficient 
cell numbers remained after cell seeding for ex vivo drug testing, cells 
were cryopreserved in 10% DMSO-containing cryopreservation media  
and/or cultured in DMEM media supplemented with 10% FBS, 1% pen−
strep and 25 mM HEPES to obtain PDCs shortly maintained for a few 
passages as adherent cultures.

Cell culture
The adherent human glioblastoma cell lines LN-229 (American Type 
Culture Collection, CRL-2611, directly purchased from the vendor), 
LN-308 (obtained from the University Hospital of Zurich) and PDCs 
(patient IDs denoted with a ‘.C’) were cultured in standard serum media 
(DMEM media, no. 41966, with 10% FBS no. 10270106, 1% pen–strep no. 
15140122 and 25 mM HEPES no. 15630056, all from Gibco). Adherent 
cell lines and PDCs were passaged using trypsin-EDTA (0.25%, Gibco, 
25200056), with PDCs shortly maintained for a few passages after 
surgical dissociation. The spheroid human glioblastoma-initiating 
cell lines ZH-161 and ZH-562 were generated at the University Hospital 
of Zurich and cultured in Neurobasal (NB) medium (Gibco, 21103049) 
supplemented with B27 (Gibco, 17504044), 20 ng ml−1 b-FGF (Pepro-
Tech, AF-100-18B), 20 ng ml−1 EGF (PeproTech, AF-100-15) and 2 mM 
L-glutamine (Gibco, 25030081). Suspension spheroid cultures were 

passaged using Accutase (STEMCELL Technologies, 07920). Cell lines 
LN-308, ZH-161 and ZH-562 were authenticated at the Leibniz Institute 
DSMZ by short tandem repeat (STR) DNA analysis, whereas LN-229 was 
not authenticated as it was bought directly from the vendor. The LN-229 
line is derived from a female patient, and LN-308, ZH-161 and ZH-562 are 
derived from male patients. LN-229 and LN-308 lines have methylated 
MGMT promoters. The LN-229 line is commercially available, and other 
glioblastoma cell lines/PDCs are obtainable from either the University 
Hospital of Zurich or the Snijder laboratory with the exception of the 
P022.C line that was not able to be expanded beyond five passages. All 
cell cultures were maintained at 37 °C, 5% CO2 in a humidified incubator.

PCY (drug testing, immunocytochemistry, confocal 
microscopy and image analysis)
The PCY method refers to high-content image-based ex vivo drug 
testing, including the following steps of cell seeding, drug testing, 
immunocytochemistry, confocal microscopy, image analysis and PCY 
score calculation for each tested drug32,35.

Cell seeding and drug testing. Freshly dissociated cells were seeded 
into CellCarrier 384 Ultra microplates (PerkinElmer, 6057300) typi-
cally within 4 h of surgery with 0.5–1.5 × 104 cells per well. For cultured 
glioblastoma cell lines and PDCs, trypsinized (adherent cultures) or 
accutase-treated (spheroid cultures) cells were seeded at 0.5–2.5 × 103 
cells per well in 384-well plates. Before cell seeding, drugs were 
re-suspended as 5 mM stock solutions and dispensed into 384-well 
plates using an Echo 550 liquid handler (Labcyte) in a randomized 
plate layout to control for plate effects. Detailed information regarding 
drugs used in this study can be found in Supplementary Table 2. Dif-
ferent drug libraries included glioblastoma drugs (GSDs, n = 3 drugs), 
ONCDs (n = 65 drugs) and NADs (n = 67 drugs). The NAD library was 
based on purchasable drugs from the vendor (Sigma-Aldrich) of n = 119 
CNS marketed drugs cited in Wager et al.66 and a curated list of n = 35 
FDA-approved drugs for CNS indications between 2010 and 2018 after 
Wager et al.66 was published. All NADs were tested at 20 μM, and, for 
select NADs, a concentration range of 0.1–100 μM was tested (Extended 
Data Fig. 3a–d). GSDs were tested at the following concentrations: 
TMZ (first-line glioblastoma chemotherapy; 50, 100, 250 and 500 µM) 
and CCNU and carmustine (BCNU) (second-line glioblastoma chemo-
therapies; 10, 50, 100 and 250 µM). All ONCDs were tested at 10 μM 
concentrations. Drug plates included the following number of replicate 
wells per drug/concentration: GSD plate, drug, n = 3 wells, DMSO, n = 16 
wells; NAD plate, drug, n = 4 wells, DMSO, n = 16–24 wells; ONCD plate, 
drug, n = 4 wells, DMSO, n = 16 wells. Cells were incubated for 48 h with 
drugs in reduced serum media at 37 °C, 5% CO2 before proceeding to 
cell fixation.

Immunocytochemistry. Cells were fixed with 4% paraformaldehyde 
(PFA) (Sigma-Aldrich, F8775) in PBS and blocked in 5% FBS and 0.1% 
Triton containing PBS. For characterization of cellular composition, 
cells were stained overnight at 4 °C in blocking solution with the follow-
ing antibodies and dilutions: Alexa Fluor 488 anti-S100 beta (1:1,000, 
Abcam, ab196442, clone EP1576Y), PE anti-Nestin (1:150, BioLegend, 
656806, clone 10C2), Alexa Fluor 488 anti-CD3 (1:300, BioLegend, 
300415, clone UCHT1), Alexa Fluor 647 anti-CD45 (1:300, BioLegend, 
368538, clone 2D1) and DAPI (1:1,000, BioLegend, 422801, stock solu-
tion 10 mg ml−1). Due to the temporary manufacturer discontinuation 
of the Alexa Fluor 488 anti-S100 beta antibody, from patient sample 
P030 and onwards, samples were stained with either a self-conjugated 
Alexa Fluor 488 anti-S100 beta antibody, where Alexa Fluor 488 NHS 
Ester (Thermo Fisher Scientific, A20000) was conjugated to the 
anti-S100 beta antibody (Abcam, ab215989, clone EP1576Y), or the 
following antibody panel where the 488 and 555 channel markers were 
swapped: Alexa Fluor 488 anti-Nestin (1:150, BioLegend, 656812, clone 
10C2), Alexa Fluor 555 anti-S100 beta (1:1,000, Abcam, ab274881, clone 
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EP1576Y), PE anti-CD3 (1:300, BioLegend, 300441, clone UCHT1) and 
Alexa Fluor 647 anti-CD45 (1:300, BioLegend, 368538, clone 2D1).

Other conjugated antibodies used included Alexa Fluor 647 
anti-tubulin beta 3 (1:1,000, BioLegend, 657406, clone AA10); Alexa 
Fluor 488 anti-vimentin (1:500, BioLegend, 677809, clone O91D3); 
Alexa Fluor 555 anti-cleaved caspase-3 (1:500, Cell Signaling Technol-
ogy, 9604S); Alexa Fluor 546 anti-HOMER (1:300, Santa Cruz Bio-
technology, sc-17842 AF546, clone D-3); PE anti-CFOS (1:300, Cell 
Signaling Technology, 14609S, clone 9F6); FITC anti-ATF4 (1:300, 
Abcam, ab225332); Alexa Fluor 488 anti-JUND (1:300, Santa Cruz Bio-
technology, sc-271938 AF488, clone D-9); and Alexa Fluor 594 anti-CD45 
(1:300, BioLegend, 368520, clone 2D1). Other unconjugated antibod-
ies used included anti-Connexin43 (1:500, Cell Signaling Technology, 
83649T); anti-EGFR (1:300, Abcam, ab98133); anti-Nestin (1:150, Bio-
Legend, 656802, clone 10C2); anti-S100 beta antibody (1:300, Abcam, 
ab215989, clone EP1576Y); and anti-Ki67 (1:300, Cell Signaling Technol-
ogy, 9129S, clone D3B5). For unconjugated primary antibodies, the fol-
lowing secondary antibodies were used: donkey anti-sheep IgG (H + L) 
cross-adsorbed secondary antibody, Alexa Fluor 488 (Thermo Fisher 
Scientific, A11015); goat anti-mouse IgG (H + L) highly cross-adsorbed 
secondary antibody, Alexa Fluor Plus 555 (Thermo Fisher Scientific, 
A32727); and goat anti-rabbit IgG (H + L) highly cross-adsorbed second-
ary antibody, Alexa Fluor Plus 647 (Thermo Fisher Scientific, A32733). 
All secondary antibodies were used at 1:500 dilution.

Confocal imaging and image analysis. Imaging of 384-well plates 
was performed with an Opera Phenix automated spinning-disk con-
focal microscope (PerkinElmer, HH14000000) at ×20 magnification 
for all assays with the exception of spheroid cell lines (ZH-161 and 
ZH-562) imaged at ×10 magnification. Select images were imaged 
at ×40 for visualization. Single cells were segmented based on their 
nuclei (DAPI channel) using open-source CellProfiler 2.2.0, and nuclear 
expansion was performed to assess cytoplasmic features, including 
marker expression. Downstream image analysis was performed with 
MATLAB R2019a–R2020a. Fractions of marker-positive cells for each 
sample and drug condition were based on local background-corrected 
intensity histograms across the whole drug plate. In patient samples, 
marker-positive populations were defined as follows: glioblastoma 
cells ((Nestin+ or S100B+) and CD45−), immune cells (CD45+ and 
S100B−Nestin−) and other marker-negative cells (S100B−Nestin−CD45−). 
Marker-positive fractions were averaged across each well/drug.

PCY score calculation. The PCY score quantifies the drug-induced 
relative reduction of any marker-defined cell population by measur-
ing the change of a defined target population upon drug treatment 
compared to DMSO vehicle control. In patient samples, the PCY score 
is calculated based on the fraction of ((Nestin+ or S100B+) and CD45− 
cells) out of all cells. In PDC lines, the score is based on (Nestin+) cells 
out of all cells. By all cells, we refer to any detected cell with a DAPI+ 
nucleus. PCY scores are averaged across technical replicates for each 
drug or control condition.

PCY score = 1 − {[TPDRUG] ÷ [TPDMSO]}

where TPDRUG = fraction of the target population in a given DRUG con-
dition of all cells and TPDMSO = fraction of the target population in the 
DMSO control condition of all cells.

A positive PCY score of 1 represents the strongest possible 
‘on-target’ response; a PCY score of 0 indicates no effect/equal cyto-
toxicity; and a negative PCY score indicates higher toxicity to other cell 
populations other than the defined target population. In cases where 
a target population is not defined, drug response and cell viability are 
measured as total cell number reduction in LN-229 and LN-308 lines 
and a reduction of 2D projected total spheroid area in ZH-161 and 
ZH-562 lines.

Deep learning of apoptotic cell morphologies. To generate a training 
dataset, cleaved CASP3+/− cells identified by IF and CellProfiler-based 
image analysis (n = 6 patient samples) were cropped as five-channel 
50 × 50 pixel images around the nuclear centroid of each cell. In total, 
6,072 single-cell image crops were manually curated and labeled as two 
classes (CASP3+/−) based on their cleaved CASP3 staining. A convolu-
tional neural network (CNN) with a modified AlexNet architecture67 
with the image input size set as 50 × 50 × 2 (two-channel bright-field 
(BF) and DAPI classifier) and the number of output classes set to 2 
(CASP3+/−) was then trained on this manually curated image dataset 
(n = 6,072 single-cell images; split by a 8:2 ratio into training and test 
data, respectively). CNN training included use of the Adam optimizer, 
with a mini-batch size of 64 and a maximum number of 30 epochs. 
The initial learning rate was set to 0.01 with a piece-wise learning rate 
schedule and a drop factor of 0.1 every 10 epochs. Network perfor-
mance on a manually curated test image dataset (n = 1,214 single-cell 
crops) is shown as a confusion matrix in Extended Data Fig. 1j. All DAPI+ 
nuclei detected in patient samples were retrospectively classified by 
this apoptotic classifier CNN based on the BF and DAPI channels to 
quantify apoptotic fractions across the prospective patient cohort, 
marker-based subpopulations and drug conditions. Cells were clas-
sified as apoptotic (CASP3+) based on a CNN confidence threshold of 
87%, close to the true-positive rate of the classifier.

Demonstration of PCY score robustness to apoptotic cells. We 
performed ex vivo NAD (n = 67 drugs) screens in two patient samples 
(P048 and P049) by staining for cleaved CASP3. The drug response 
(Extended Data Fig. 2i–k) shows excellent reproducibility, both when 
comparing the original PCY scores with the PCY scores obtained after 
excluding CASP3+ cells by IF as well as when comparing the PCY scores 
after excluding CASP3+ cells defined either by IF or by the CNN apop-
totic classifier. We also re-calculated the PCY scores by excluding the 
CNN-classified apoptotic cells measured across all 27 patient samples 
and 67 NADs and compared them to the original PCY scores reported in 
the manuscript (Extended Data Fig. 2k). The drug response correlation 
with or without the inclusion of apoptotic cells was 0.988, demonstrat-
ing that the PCY score is highly robust to the presence of apoptotic 
cells (Extended Data Fig. 2k) and can be expected to be equally robust 
to other forms of cell death.

Targeted next-generation sequencing (Oncomine 
Comprehensive Assay)
Formalin-fixed paraffin-embedded (FFPE) tissue blocks from 
patient-matched samples collected from the University Hospital of 
Zurich were used to determine genetic alterations. Tumor areas were 
marked on the hematoxylin and eosin (H&E) slide, and relative tumor 
content was estimated by a trained pathologist. One to three core 
cylinders (0.6-mm diameter) from the FFPE blocks (tumor areas) were 
used for DNA and RNA isolation. DNA was isolated with a Maxwell 16 
FFPE Tissue LEV DNA Purification Kit (Promega, AS1130). DNA con-
centration was determined using a Qubit dsDNA HS Assay Kit. RNA 
was extracted with a Maxwell 16 FFPE Tissue LEV RNA Purification Kit 
(Promega, AS1260) after pre-treatment with DNase1 for 15 min at room 
temperature. Library preparation with 20 ng of DNA or RNA input was 
conducted using Oncomine Comprehensive Assay version 3. Adap-
tor/barcode ligation, purification and equilibration were automated 
with Tecan Liquid Handler (EVO-100). Next-generation sequencing 
(NGS) libraries were templated using Ion Chef and sequenced on an S5 
(Thermo Fisher Scientific), and data were analyzed using Ion Reporter 
software 5.14 with Applied Filter Chain: Oncomine Variants (5.14) set-
tings and Annotation Set: Oncomine Comprehensive Assay version 3 
Annotations version 1.4. For NGS data analysis, Torrent Suite software 
(Ion Reporter) was used, enabling detection of small nucleic variants 
(SNVs), copy number variations (CNVs), gene fusions and indels from 
161 unique cancer driver genes.
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Detected sequence variants were evaluated for their pathogenicity 
based on previous literature and the ClinVar database68. Gene altera-
tions described as (likely) benign were not included in the results. 
Non-pathogenic mutations harboring a minor allele frequency higher 
than 0.01 were not selected. The Default Fusion View parameter was 
selected. For the CNV confidence range, the default filter was used to 
detect gains and losses using a 5% confidence interval (CI) for minimum 
ploidy gain over the expected value and 95% CI for minimum ploidy loss 
under the expected value. CNV low-confidence range was defined for 
gain by copy number from 4 to 6 (minimum CNV CI 5%: 2.9) and loss 
from 0.5 to 1 (maximum CNV CI 95%: 2.43). High-confidence range was 
defined by gain up to 6 copy number (minimum CNV CI 5%: 4.54) and 
loss below 0.5 copy number (maximum CNV CI 95%: 1.37). The 5% and  
95% CIs of all selected loss and gain are available in Supplementary Data 1.  
The minimum number of tiles required was 8. Results are reported as 
detected copy number.

scRNA-seq and re-analysis of other published datasets
Cryopreserved patient samples were thawed and used for scRNA-seq. 
Viability markers SYTOX Blue (1 μM, Thermo Fisher Scientific, S11348) 
and DRAQ5 (1 μM, BioLegend, 424101) were added to the cell suspen-
sion at least 15 min before sorting. Fluorescence-activated cell sorting 
(FACS) gates were set based on CD45 (Alexa Fluor 594 anti-CD45, 1:20, 
BioLegend, 368520, clone 2D1) and SYTOX Blue/DRAQ5 intensities to 
sort viable CD45+ and CD45− populations (Extended Data Fig. 1a) into 
DNA LoBind Eppendorf tubes (VWR, 525-0130) using the BD FACSAria 
Fusion Cell Sorter and FlowJo 10.4.2 software. CD45− and CD45+ cells 
were mixed at 2:1 to 10:1 ratios depending on availability to enrich for 
glioblastoma cells. Single-cell transcriptomes from four patient sam-
ples (P007, P011, P012 and P013), part of the prospective cohort, are 
referred to as ‘Lee et al.; this study’. For patient sample P024 that was 
used to measure the effect of vortioxetine drug treatment, cells sorted 
by FACS were incubated for 3 h with or without 20 µM vortioxetine 
before proceeding to library preparation. Libraries were generated 
using Chromium Next GEM Single Cell 3′ version 3.0 and version 3.1 
kits (10x Genomics) and sequenced on a NovaSeq 6000 (Illumina). 
Read alignment to the GRCh38 human reference genome, generation 
of feature–barcode matrices and aggregation of multiple samples 
were performed using the Cell Ranger analysis pipeline (10x Genom-
ics, versions 3.0.1 and 6.1.1). Four patient samples were processed in 
November 2019 with the earlier version of 10x Genomics library prep 
kits and Cell Ranger analysis pipeline, whereas the later sample (P024) 
was processed in September 2021.

Analysis of the cohort-matched in-house scRNA-seq dataset. 
Quality control for the in-house dataset (Lee et al.) was performed by 
analyzing only high-quality cells with less than 10% of mitochondrial 
transcripts and genes that had at least a count of 2 in at least three cells. 
For the Lee et al. dataset, an expression threshold of log2(count+1) > 3 
was applied to consider a gene expressed in a given cell. Uniform mani-
fold approximation and projection (UMAP) clusters in Extended Data 
Fig. 1c are based on Leiden community detection, and cell types are 
assigned by marker expression. Glioblastoma clusters are numbered 
in descending order based on cluster-averaged expression of the Gene 
Ontology term ‘stem cell differentiation’ (GO:0048863).

Re-analysis of other published scRNA-seq datasets. To analyze 
additional glioblastoma patient cohorts by scRNA-seq, we used two 
published datasets: Neftel et al.4 and Yu et al.40. For Neftel et al., we 
removed cells with fewer than 29 detected genes and/or more than 
15% of mitochondrial transcripts. For Yu et al. the data were already 
pre-filtered, but patient samples (7–9 and 14–15) that did not cor-
respond to glioblastoma (grade IV astrocytomas) were not included. 
For both datasets, only genes that had at a count of 2 in at least two 
cells were included in the analysis. For the Neftel et al. and Yu et al. 

datasets, expression thresholds of log2(count+1) over 5 and 3, respec-
tively, were applied to consider a gene expressed in a given cell. For 
all three scRNA-seq datasets, only patient samples with more than 50 
positive cells for a given gene were considered in Fig. 1b and Extended 
Data Fig. 1d.

Inferred CNA analysis. CNAs were inferred using the ‘infercnv’ R 
package (version 1.18.0), using the same cell type definition in Fig. 1b 
and expression threshold as described above, sampling up to 70 cells 
per patient and cell type. ‘infercnv’ was run on the sampled cells with 
default settings with CD45+ immune cells across all patients set as the 
reference cell type. A cell was considered to have a detectable CNA if 
the mean ‘modified expression’ across all genes on each respective 
chromosome was either above a threshold of 1.1 for chromosome 7 
(amplification) or below 0.9 for chromosome 10 (loss). Only patient 
samples that had detectable CNAs for their respective chromosomes 
in at least 5% of cells (combined across ‘Nestin+ or S100B+’ and ‘other’ 
cells) were included in the analysis presented in Fig. 1c.

Cell-type-specific enrichment analysis of gene modules enriched 
in ‘other’ cells. To determine putative cell types represented in 
Nestin−S100B−CD45− cells (‘other’) by scRNA-seq, we analyzed the 
log2(fold change) of ‘other’ enriched genes compared to glioblas-
toma cells. First, an aggregated average ‘metacell’ for each patient 
and subpopulation (either ‘other’ or glioblastoma cells) was created 
by summing the counts across each [patient-subpopulation] and 
dividing this by the corresponding number of cells. Next, consider-
ing only genes where the aggregate-averaged expression is above 1 
in at least one ‘metacell’ type, we calculated the log2(fold change) of 
[‘other’ metacell] / [glioblastoma metacell] per gene and per patient. 
Manhattan distance-based clustering of the top 10 log2(fold change) 
of ‘other’ enriched genes per patient is visualized in Extended Data 
Fig. 1g. Dendrogram tree cutting of ‘other’ enriched genes yielded 
gene modules that were analyzed by WebCSEA69 to determine most 
likely cell types represented by the respective gene modules. The 
top seven most likely cell types representing each ‘other’ gene mod-
ule ranked by the lowest combined P values are shown in Extended  
Data Fig. 1h.

Neural specificity and patient specificity score analysis. Neural 
specificity and patient specificity scores for each gene were defined as 
follows. Using the in-house dataset, we identified putative cell types by 
unsupervised clustering using Monocle70 and annotated the clusters 
as being either immune cells or neural cells based on known marker 
genes. DESingle71 analysis resulted in 11,571 neural-specific and 1,157 
immune-specific genes (log2FC > 0.5). Using these cell-type-specific 
gene sets, we calculated an immune score and a neural score for each 
cell using singscore, and we classified every cell in the additional 
datasets as either neural or immune based on a linear combination of 
both scores. The ‘neural specificity score’ is defined as follows: [neu-
ral specificity = fraction of neural cells expressing gene – fraction of 
immune cells expressing gene] where expression of a given gene in a 
cell is defined as having any non-zero count. This score ranges from −1 
(gene is expressed in all immune cells and no neural cells) to +1 (gene 
is expressed in all neural cells and no immune cells). For genes with 
low expression, this score will be close to 0, reflecting the fact that 
clear statements cannot be made about cell type specificity for these 
genes. To assess the variation of gene expression across patients, we 
defined a ‘patient specificity score’ as follows. First, for every gene gi and 
every patient pj, we calculated a cell type composition independent 
fraction of cells expressing gene gi as [Fraction_expressing_ij = fraction_
expressing_immune_ij + fraction_expressing_neural_ij]. We then defined 
patient specificity as the median absolute deviation (MAD) of fraction_ 
expressing across all patients, thus defining [Patient_specificity_i =  
mad(Fraction_expressing_i,:)].

http://www.nature.com/naturemedicine
http://amigo.geneontology.org/amigo/term/GO:0048863


Nature Medicine

Article https://doi.org/10.1038/s41591-024-03224-y

siRNA knockdown and quantitative real-time PCR
All siRNAs used in the study were part of the MISSION esiRNA library 
(Sigma-Aldrich, Euphoria Biotech; Supplementary Table 4) and ordered 
as custom gene arrays (esiOPEN and esiFLEX). FLUC esiRNA (EHUFLUC) 
targeting firefly luciferase was used as a negative control, and KIF11 
esiRNA (EHU019931) was used as a positive control for transfection and 
viability. siRNAs were transfected at 10 ng per well in 384-well plates 
(used for imaging and drug incubation) and 40 ng per well in 96-well 
plates (RNA extraction, quantitative real-time PCR (qRT–PCR)) with 
Lipofectamine RNAiMAX (Invitrogen, 13778075). For 384-well plates, 
both siRNAs and Lipofectamine were dispensed using a Labcyte Echo 
liquid handler in a randomized plate layout to control for plate effects 
when possible. For data presented in Figs. 3d and 5i and Extended Data 
Figs. 4d and 7j, LN-229 cells were incubated at 37 °C, 5% CO2 for 48 h 
after siRNA transfection before fixation, IF and RNA extraction. For 
Fig. 5k, after 48 h of siRNA transfection, LN-229 cells were incubated 
for an additional 24 h with either DMSO control or vortioxetine (10 µM) 
before fixing and subsequent analysis.

siRNA knockdown efficiency and relative abundance for the genes 
BTG1, BTG2, JUN and MKI67 were measured by TaqMan Array 96-well 
plates (Applied Biosystems) using TaqMan Fast Advanced Master Mix 
(Thermo Fisher Scientific, A44360) on a QuantStudio 3 Real-Time PCR 
System (Applied Biosystems, A28567). Total RNA from LN-229 cells was 
extracted using the Direct-zol RNA MicroPrep Kit (Zymo Research, 
R2062) and measured using a Qubit 4 fluorometer (Thermo Fisher 
Scientific). cDNA was synthesized with an iScript cDNA Synthesis Kit 
(Bio-Rad, 1708890). For each TaqMan biological replicate assay (n = 3 
replicates), 25 ng of cDNA per sample was used. To calculate the rela-
tive abundance of each target gene, the geometric mean Ct value of 
four endogenous control genes (18S rRNA, GAPDH, HPRT and GUSB) 
was subtracted from each [sample-target gene] Ct value to derive the 
deltaCt (dCt) value.

COSTAR
COSTAR is an interpretable molecular machine learning approach 
that uses logistic LASSO regression in a cross-validation setting to 
learn a multi-linear model that identifies the minimal set of drug– 
target connections that maximally discriminates PCY-hit drugs from 
PCY-negative drugs.

Drug–target connections were retrieved from the DTC41. DTC is 
a crowd-sourced platform that integrates drug-target bioactivities 
curated from both literature and public databases, such as PubChem 
and ChEMBL. Drug–target annotations (DTC bioactivities) listed as of 
August 2020 were included, with the target organism limited to Homo 
sapiens. Among PCY-tested drugs in our NAD and ONCD libraries, 127 
out of 132 drugs had DTC ‘bioactivity’ annotations. PTGs with biochemi-
cal associations to a given drug correspond to bioactivities with the 
inhibitory constant ‘KI’ as the ‘End Point Standard Type’. ePTGs include 
all annotated drug bioactivities. STGs downstream of ePTGs were 
retrieved by high-confidence protein–protein interactions annotated 
in the STRING database (interaction score ≥ 0.6). The final drug–target 
connectivity map that was used for COSTAR consisted of 127 PCY-tested 
drugs, 975 extended primary targets, 10,573 secondary targets and 
114,517 network edges. The 127 drugs were labeled either as PCY-hits 
(n = 30, equally split across NADs and ONCDs) or as PCY-negative drugs 
(n = 97) based on the ranked mean PCY score across patients.

A 20-fold cross-validated LASSO generalized linear model was 
trained in MATLAB with the drug–target connectivity map as the pre-
dictor variable and PCY-hit status (hit versus negative) as the binomially 
distributed response variable to identify the optimal regularization 
coefficient (lambda) across a geometric sequence of 60 possible values. 
Final model coefficients were fitted using the lamba value correspond-
ing to the minimum deviance in a cross-validation setting (Extended 
Data Fig. 5a). COSTAR performance was first evaluated on the training 
dataset, represented as a confusion matrix in Fig. 4d. Using this trained 

linear model, COSTAR was next used as an in silico drug screening tool 
to predict the PCY-hit probability (COSTAR score) based on the con-
nectivity of 1,120,823 compounds annotated in DTC (Supplementary  
Data 2). For interpretability, COSTAR subscores, defined as the indi-
vidual connectivity to target genes multiplied by their respective coef-
ficients (betas) in the linear model, can be investigated in Fig. 4h and 
Extended Data Fig. 5c. COSTAR predictions from this in silico screen 
were further experimentally validated ex vivo by PCY in glioblastoma 
patient samples (n = 4) on a set of untested drugs predicted as either 
COSTAR-HIT (n = 23) or COSTAR-NEG (n = 25).

DRUG-seq
High-throughput multiplexed RNA-seq was performed with the 
DRUG-seq method as described in Ye et al.43 with a few modifications. 
Oligonucleotides used for DRUG-seq are listed in Supplementary 
Table 5. Modifications to the published method are the following: (1) 
extraction of RNA before cDNA reverse transcription with the Zymo 
Direct-zol-96 RNA isolation kit (Zymo Research, R0256); (2) change of 
reverse transcription primers for compatibility with standard Illumina 
sequencing primers; (3) cDNA clean-up before library amplification 
performed with the DNA Clean & Concentrator-5 kit (Zymo Research, 
D4013); and (4) tagmentation performed with 2-ng input and sequenc-
ing library generated using the Nextera XT library prep kit (Illumina, 
FC-131-1024). In short, 1 × 104 LN-229 cells were plated in CellCarrier 96 
Ultra microplates (PerkinElmer, 6055302) and incubated overnight in 
reduced serum media at 37 °C, 5% CO2 before drug treatment. A total 
of 20 drugs (Supplementary Table 2) were profiled across two differ-
ent timepoints (6 h and 22 h; n = 4 replicates per drug/timepoint). 
These drugs included PCY-hit NADs spanning diverse drug classes 
(n = 11), PCY-hit ONCDs (n = 7), PCY-negative NADs (n = 2) and DMSO. 
Cells in drug-treated 96-well plates were lysed with TRIzol reagent 
(Thermo Fisher Scientific, 15596018), and then subsequent cDNA 
and library prep was performed as described above. Finally, 100-bp 
(80:20) paired-end reads were generated using Illumina’s NextSeq 
2000 platform.

Calcium assays on the FLIPR platform
For FLIPR calcium assays, LN-229 or P050.C cells were seeded on 
poly-d-lysine-coated ViewPlate-96 microplates (PerkinElmer, 6005182) 
in 100 µl of medium (LN-229: 70,000 cells per well; P050.C: 20,000 cells 
per well) 24 h before the experiment. Fluorescent Ca2+ signal was meas-
ured using the Calcium 6 assay kit (Molecular Devices, 5024048) by the 
FLIPR Tetra (Molecular Devices) using a 470–495-nm LED excitation 
module and a 515–575-nm emission filter. Calcium 6 dye stock solution 
was prepared in 10 ml of sterile-filtered nominal Ca2+ free (NCF) modi-
fied Krebs buffer containing 117 mM NaCl, 4.8 mM KCl, 1 mM MgCl2, 
5 mM D-glucose and 10 mM HEPES (pH 7.4) stored as 500-µl aliquots at 
−20 °C. Before each experiment, the dye stock was freshly diluted 1:10 
in NCF Krebs buffer, and, after removing the medium from the cells, 
50 µl of the diluted dye was applied per well followed by incubation at 
37 °C for 2 h in the dark. For the assay setup outlined in Fig. 5e, cells were 
treated with their respective PCY-drug after a period of equilibration 
in 2 mM calcium-containing buffer. For fold change calculations pre-
sented in Fig. 5f and Extended Data Fig. 7b, normalized calcium levels 
for each drug were calculated by averaging calcium levels after drug 
treatment (400–600-s interval) divided by the basal level of calcium 
before drug administration (200–300-s interval). In the ER Ca2+ store 
release assay, stable baselines were established for 50 s before 50 µl of 
2 µM (2×) thapsigargin (Sigma-Aldrich, T9033) or 40 µM (2×) drug solu-
tions freshly prepared in NCF Krebs buffer were robotically dispensed. 
Next, the cells were incubated, and fluorescence was monitored in the 
presence of thapsigargin or drugs for another 5 min. In the extracel-
lular Ca2+ uptake assay, after initial recording of the baseline, 50 µl 
of 4 mM CaCl2 (2×) prepared in NCF Krebs buffer was dispensed onto 
the cells to re-establish a physiological 2 mM calcium concentration, 
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and the fluorescence was monitored for 5 min. Next, 60 µM (3×) drug 
solutions freshly prepared in Krebs buffer containing 2 mM CaCl2 were 
robotically dispensed, and fluorescence was recorded for an additional 
4 min. The raw data were extracted with ScreenWorks software version 
3.2.0.14. The values represent average fluorescence level of the Calcium 
6 dye measured over arbitrary selected and fixed timeframes.

Calcium imaging using the Fura-2 calcium indicator
Glioblastoma cell lines (LN-229 and LN-308) and PDCs (P024.C, P040.C, 
P049.C and P050.C lines) were seeded in six-channel µ-Slide VI 0.4 
ibiTreat (ibidi, 80606), with 30,000–100,000 cells per channel and up 
to three channels per slide. Seeded cells were cultured in these chamber 
slides 1–2 d before the experiment to achieve approximately 70–80% 
confluency. Before dye loading of the Fura-2 AM calcium indicator 
(Thermo Fisher Scientific, F1221), cells were washed two times with 
HEPES-buffered Krebs-Ringer Solution (referred to as Krebs buffer; 
Thermo Fisher Scientific, 67795.K2). Cell permeant Fura-2 dye resus-
pended in DMSO was incubated with cells (1 μM solution in Krebs 
buffer) for 15 min at 37 °C, 5% CO2 in a dark humidified incubator and 
washed three times with Krebs buffer before imaging. All subsequent 
calcium imaging and drug perfusion were performed in Krebs buffer.

Live-cell calcium imaging was performed at ×20 magnification 
(S Fluor ×20 NA 0.75 objective) on a Nikon Ti2-E inverted microscope 
equipped with a Nikon DS-FI3 color camera (2,880 × 2,048 pixels, 
2.4 μm × 2.4 μm), color BF camera, motorized fast emission filter 
wheels (Sutter Instrument) and a FURA dichroic mirror. FURA filter-
set specifications include: LED 1 (excitation window 1), 340/26; LED 
2 (excitation window 2), 387/11; and an emission filter, 510/84. 2 × 2 
binned images were acquired every 2 s throughout an imaging time of 
10 min per experiment. CO2 levels and temperature were controlled by 
an Okolab box type incubation system. Vortioxetine (20 μM solution) 
was manually administered on the chamber slide. Timepoint of drug 
addition was, on average, between 125 s and 140 s after the start of 
imaging. Downstream image analysis was performed with ImageJ and 
R. In ImageJ, circular regions of interest (ROIs) were manually selected 
for each cell present in the first image frame of each experiment’s time 
series as well as five background ROIs to calculate the mean back-
ground intensity. For both the 340-nm and 380-nm channels, mean 
pixel intensities across each cell ROI and image frame were measured. 
Subsequently in R, mean background intensity was subtracted from 
each cell ROI before further downstream analysis. Cell ROIs with more 
than five image timeframes exhibiting a signal lower than background 
(lower one percentile of Fura-2 intensities across cells in the first 30 s of 
imaging) were excluded from the analysis. Timepoint of vortioxetine 
addition was determined either by outlier detection or by manual 
inspection between 120 s and 150 s after the start of imaging, and this 
single timeframe was assigned to N/A (not applicable) to exclude the 
possibility of imaging artifacts impeding the analysis. The raw Fura-2 
calcium signal was defined as the ratio of 340/380 intensity. The mean 
change in calcium signal after vortioxtine treatment was defined as the 
baseline signal before drug treatment subtracted from the calcium 
signal after vortioxetine treatment, each averaged across a 120-s time 
window. Normalized Fura-2 calcium signal corresponds to the baseline 
signal subtracted from the raw signal on a cell ROI basis. The presence 
(Ψ) or absence (Ø) of oscillatory calcium signaling was determined by 
peak detection analysis. If a cell ROI had more than one or two peaks 
detected within its respective time span (baseline versus after vortiox-
etine drug treatment), the response type was assigned as oscillatory.

Electrophysiology
LN-229 and LN-308 glioblastoma cell lines were seeded at approxi-
mately 40% confluence in 35-mm Petri dishes (CLS430165, Corning). 
Whole-cell patch-clamp recordings were performed with a HEKA EPC10 
USB amplifier using the following solutions: extracellular (in mM): 140 
NaCl, 2 MgCl2, 2 CaCl2, 10 HEPES, 3 KCl, 10 D-glucose, pH 7.4; pipette 

(in mM): 4 NaCl, 120 K-gluconate, 10 HEPES, 10 EGTA, 3 Mg-ATP, 0.5 
CaCl2, 1 MgCl2, pH 7.2 (liquid junction correction 12 mV). Patch pipettes 
(~10 MOhm) were pulled from borosilicate glass capillaries (Harvard 
Apparatus, 30-0038) using a two-step vertical pipette puller PC 100 
(Narishige) and further fire-polished using a homemade microforge. 
Membrane voltage was measured during 10 s (current-clamp mode), 
and currents elicited upon changes in voltage (voltage-clamp mode) 
were assessed by keeping cells at −50 mV for 300 ms, followed by 
stepwise increments of +20 mV during 1,000 ms (−120 mV to +100 mV) 
and ending with −50 mV for 300 ms. Current-clamp and voltage-clamp 
protocols were executed automatically every minute during the experi-
ment. Cells were kept at their respective membrane voltage (voltage 
clamp) in between protocols. For every cell, a 5-min control period 
was recorded after achieving whole cell followed by a 10-min record-
ing with vortioxetine, 10 μM treatment. Average steady-state current 
and membrane voltage were calculated during 80% of recorded time.  
A linear mixed-effects model was fitted by: ‘Current density ~ Command 
voltage (Vcmd)* Condition (Cond.) + (1|Cell ID)’ to assess how command 
voltage and condition influence current density. Summary statistics 
are reported in Extended Data Fig. 7i.

Incucyte live-cell imaging
In total, 2.5 × 103 LN-229 cells per well were plated in CellCarrier 96 
Ultra microplates (PerkinElmer, 6055302) 24 h before the experi-
ment and transfected with BTG1, BTG2 and FLUC (−) MISSION esiRNAs 
(Sigma-Aldrich, Euphoria Biotech, 40 ng per well) using Lipofectamine 
RNAiMAX (Invitrogen, 13778075). Real-time confluence of cell cultures 
(n = 4 replicate wells per condition) was monitored by imaging every 2 h 
for 7 d at ×10 magnification with the ‘phase’ channel using the Incucyte 
live-cell analysis system S3 (Sartorius). Automatic image segmenta-
tion and analysis of the phase-contrast images was performed by the 
Incucyte base analysis software (version 2020B).

Timecourse RNA-seq library preparation and sequencing
LN-229 cells were seeded at 2 × 105 cells per well in six-well Nunc 
Cell-Culture Treated Multidishes (Thermo Fisher Scientific, 140675) 
and incubated overnight in reduced serum media at 37 °C, 5% CO2 
before drug treatment. The following day, vortioxetine (AvaChem 
Scientific, 3380) was manually added to each well at a final concentra-
tion of 20 µM. At the start of the experiment, LN-229 cells that were not 
treated with vortioxetine were collected as the 0-h timepoint. After 3, 6, 
9, 12 and 24 h following vortioxetine treatment, drug-containing media 
were removed, and cells were collected in TRIzol reagent (Thermo 
Fisher Scientific, 15596018). Total RNA was isolated using Direct-zol 
RNA MicroPrep Kit (Zymo Research, R2062), and RNA quality and 
quantity were determined with an Agilent 4200 TapeStation. Sample 
RNA integrity number (RIN) scores ranged from 5.9 to 10 (mean RIN, 
9.33). RNA input was normalized to 300–400 ng, and RNA libraries 
were prepared using the Illumina TruSeq stranded mRNA library prep. 
Then, 100-bp single-end reads were generated using Illumina’s NovaSeq 
6000 platform with an average sequencing depth of approximately 
50 million reads per replicate. Reads were mapped and aligned to the 
reference human genome assembly (GRCh38.p13) using STAR/2.7.8a, 
and counts were extracted using ‘featureCounts’. Subsequent read 
normalization (variance stabilizing transformation, vsd-normalized 
counts) and RNA-seq analysis, including differential expression  
analysis, was performed with the R package ‘DESeq2’72.

Timecourse proteomics and phosphoproteomics
Cell preparation and vortioxetine treatment were performed as in 
the ‘Timecourse RNA-seq library preparation and sequencing’ sub-
section except that cell numbers were scaled to be seeded in T-150 
culture flasks, and three timepoints were measured (0 h, 3 h and 9 h). 
Peptides were prepared using the PreOmics iST kit on the PreON (HSE 
AG) programmed to process eight samples in parallel. Cell pellets were 
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resuspended in 50 µl of lysis buffer and denatured for 10 min at 95 °C, 
followed by 3 h of digestion with trypsin and Lys-C. Peptides were 
dried in a speed-vac (Thermo Fisher Scientific) for 1 h before being 
resuspended in LC-LOAD buffer at a concentration of 1 μg μl−1 with iRT 
peptides (Biognosys).

Samples were analyzed on an Orbitrap Lumos mass spectrometer 
equipped with an Easy-nLC 1200 (both Thermo Fisher Scientific). Pep-
tides were separated on an in-house packed 30-cm RP-HPLC column 
(Michrom Bioresources, 75 μm i.d. × 30 cm; Magic C18 AQ 1.9 μm, 
200 Å). Mobile phase A consisted of HPLC-grade water with 0.1% for-
mic acid (FA); mobile phase B consisted of HPLC-grade acetonitrile 
(ACN) (80%) with HPLC-grade water and 0.1% (v/v) FA. Peptides were 
eluted at a flow rate of 250 nl min−1 using a nonlinear gradient from 4% 
to 47% mobile phase B in 228 min. For data-independent acquisition 
(DIA), DIA-overlapping windows were used, and a mass range of m/z 
396–1,005 was covered. The DIA isolation window size was set to 8 m/z 
and 4 m/z, respectively, and a total of 75 or 152 DIA scan windows were 
recorded at a resolution of 30,000 with an AGC target value set to 
1,200%. Higher-energy collisional dissociation (HCD) fragmentation 
was set to 30% normalized collision. Full mass spectra were recorded 
at a resolution of 60,000 with an AGC target set to standard and the 
maximum injection time set to auto. DIA data were analyzed using 
Spectronaut version 14 (Biognosys). MS1 values were used for quan-
tification, and peptide quantity was set to mean. Data were filtered 
using q value sparse with a precursor and a protein q value cutoff of 
0.01 FDR. Interference correction and local cross-run normalization 
was performed. For PRM measurements, peptides were separated by 
reverse-phase chromatography on a 50-cm ES803 C18 column (Thermo 
Fisher Scientific) that was connected to a Easy-nLC 1200 (Thermo Fisher 
Scientific). Peptides were eluted at a constant flow rate of 200 nl min−1 
with a 117-min nonlinear gradient from 4% to 52% buffer B (80% ACN, 
0.1% FA) and 25–50% B. Mass spectra were acquired in PRM mode on 
an Q Exactive HF-X Hybrid Quadrupole-Orbitrap MS system (Thermo 
Fisher Scientific). The MS1 mass range was 340–1,400 m/z at a resolu-
tion of 120,000. Spectra were acquired at 60,000 resolution (automatic 
gain control target value 2.0 × 105). Normalized HCD collision energy 
was set to 28% and maximum injection time to 118 ms. Monitored pep-
tides were analyzed in Skyline version 20, and results were uploaded 
to PanoramaWeb.

For phosphopeptide enrichment, protein lysate from LN-229 cells 
was prepared using a deoxycholate-based buffer. Five hundred micro-
grams of vortioxetine-treated cells at each timepoint (n = 3 replicates) 
were used as starting material. A tryptic digest was performed for 16 h. 
Samples were then purified on MACROSpin C18 columns (Harvard 
Apparatus). Phosphopeptides were specifically enriched using IMAC 
cartridges on the Bravo AssayMAP liquid handling platform (Agilent). 
Samples were dissolved in 160 μl of loading buffer (80% ACN, 0.1% 
trifluoroacetic acid (TFA)). Then, the AssayMAP phosphoenrichment 
protocol was performed with slight modifications. After purification, 
dried peptides were resuspended in LC buffer and subjected to DDA-MS 
on a Q Exactive H-FX mass spectrometer equipped with an Easy-nLC 
1200 (both Thermo Fisher Scientific). Peptides were separated on 
an ES903 column (Thermo Fisher Scientific, 75 μm i.d. × 50 cm; par-
ticle size 2 μm). Mobile phase A consisted of HPLC-grade water with 
0.1% FA; mobile phase B consisted of HPLC-grade ACN (80%) with 
HPLC-grade water and 0.1% (v/v) FA. Peptides were eluted at a flow rate 
of 250 nl min−1 using a nonlinear gradient from 3% to 56% mobile phase 
B in 115 min. MS1 spectra were acquired at a resolution of 60,000 with 
an AGC target value of 36 and a maximum injection time of 56 ms. The 
scan range was between 350 m/z and 1,650 m/z. A data-dependent 
top 12 method was used with a precursor isolation window of 1.3 m/z. 
MS/MS scans were acquired with normalized collision energy of 27 at 
a resolution of 15,000. AGC target was 15 with a maximum injection 
time of 22 ms. Dynamic exclusion was set to 30 s. Data analysis was per-
formed using FragPipe (version 19.1) with the LFQ-phospho workflow73.  

Min site localization probability was set to 0.75 in IonQuant74. Statisti-
cal analysis was performed on the phosphoprotein-filtered combined 
protein output in FragPipe-Analyst.

Clonogenic survival assay
Adherent cells (LN-229: 50 cells; LN-308: 300 cells) were seeded 
in 96-well plates (n = 6 wells per condition; 100 µl of medium) and 
incubated overnight. On the following day, medium was replaced 
by fresh medium containing indicated final concentrations of vorti-
oxetine or DMSO. Glioblastoma-initiating cells (ZH-161 and ZH-562; 
500 cells) were seeded in 75 µl of medium and incubated overnight. 
Treatment was initiated by addition of 75 µl of medium containing 2× 
concentrated vortioxetine or DMSO to reach indicated final concen-
trations. DMSO concentration was kept at 0.5% for all treatments and 
controls. After treatment addition, cells were cultured for 11 d (LN-
229) to 13 d (other cell lines), and clonogenic survival was estimated 
from a resazurin-based assay75 using a Tecan M200 PRO plate reader 
(λEx = 560 nm / λEm = 590 nm).

Collagen-based spheroid invasion assay
Spheroid invasion assay was performed as described (Kumar et al.76). 
In brief, 2,000 cells were seeded cell-repellent 96-well U-bottom plates 
(Greiner Bio-One, 650979, n = 6 wells per condition) and incubated 
for 48 h to allow spheroid formation. Subsequently, 70 µl of medium 
was removed, and spheroids were overlaid with 70 µl of 2.5% Colla-
genase IV (Advanced Biomatrix, 5005-B) in 1× DMEM containing sodium 
bicarbonate (Sigma-Aldrich, S8761), and collagen was solidified in 
the incubator for 2 h. Collagen-embedded spheroids were then over-
laid with 100 µl of chemoattractant (NIH-3T3-conditioned medium) 
containing 2× concentrated vortioxetine/DMSO (0.5% final DMSO 
concentration across conditions) and incubated for 36 h. Spheroids 
were stained with Hoechst, and images were acquired on a MuviCyte 
imaging system (PerkinElmer, HH40000000) using a ×4 objective. 
Images were contrast enhanced and converted to binary using ImageJ/
Fiji and quantified with automated Spheroid Dissemination/Invasion 
counter software (aSDIcs), which quantifies the migration distance 
from the center of the spheroid for each detected cell nucleus76.

In vivo drug testing
All animal experiments were performed under the guidelines of 
Swiss federal law on animal protection and were approved by the 
cantonal veterinary office (ZH98/2018). CD1 female nu/nu mice  
( Janvier) of 6–12 weeks of age were used in all experiments, and 100,000 
LN-229-derived or 150,000 ZH-161-derived cells were implanted77. 
Mice were euthanized when they exhibited neurological symptoms 
or a mouse grimace scale score of 2 (ref. 78). We confirm that these 
criteria were not exceeded. Mice were housed in groups of five mice 
per cage in the animal facility of LASC Zurich and kept in transparent 
plastic Eurostandard Type III cages measuring 425 × 266 × 155 mm. 
The cages contained autoclaved, dust-free sawdust bedding (80–90 g 
per cage) and one Nestlet (5 × 5 cm). The mice were fed a pelleted and 
extruded Kliba No. 3436 mouse diet (Provimi Kliba) ad libitum and had 
unrestricted access to sterilized drinking water. The room maintained a 
12-h light/dark cycle with artificial light. The temperature was 21 ± 1 °C, 
and the relative humidity was 50 ± 5%.

Test-naive mice were randomly assigned to drug treatment groups 
for experiments (in vivo drug treatment Trials I–V). Tumor-bearing 
mice were treated from day 5 to day 21 after tumor implantation with 
intraperitoneally administered vortioxetine daily 10 mg kg−1, citalo-
pram daily 10 mg kg−1, paliperidone daily 5 mg kg−1, apomorphine daily 
5 mg kg−1, aprepitant daily 20 mg kg−1, brexpiprazole daily 1 mg kg−1, 
chlorpromazine three times per week 10 mg kg−1, TMZ 50 mg kg−1 for 
five consecutive days, CCNU 20 mg kg−1 at day 7 and day 14 after tumor 
implantation or daily DMSO control. MRI was performed with a 4.7T 
imager (Bruker BioSpin) when the first mouse became symptomatic for 
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in vivo Trials I–III or a 7T imager (Bruker BioSpin) at days 12, 25, 38 and 
48 after tumor implantation for in vivo Trial IV. Coronal T2-weighted 
images were acquired using ParaVision 360 (Bruker BioSpin). Tumor 
regions were identified manually by two independent raters, and maxi-
mum perimeter was outlined and quantified using MIPAV (11.0.7).

For immunohistochemistry analysis, mouse brains were embed-
ded in Shandon Cryochrome (Thermo Fisher Scientific) and were cut 
horizontally by 8-μm steps until reaching the tumor. Tissue sections 
were stained for 1 s with 0.4% methylene blue and rinsed with deion-
ized water (2 × 10 dips) to confirm tumors (when present) under the 
microscope. Sections were stored in dark dry boxes overnight before 
being stored at −80 °C. Sections were fixed with 4% PFA (Sigma-Aldrich, 
F8775) in PBS, blocked in 5% FBS and 0.1% Triton containing PBS and 
stained overnight at 4 °C in blocking solution with DAPI and the 
following antibodies and dilutions: Alexa Fluor 488 anti-vimentin 
(1:500, BioLegend, 677809, clone O91D3), anti-Ki67 (1:300, Cell Sign-
aling Technology, 9129S, clone D3B5) and goat anti-rabbit IgG (H + L) 
highly cross-adsorbed secondary antibody, Alexa Fluor Plus 647 
(1:500, Thermo Fisher Scientific, A32733). Imaging was performed 
by ×20 fluorescence imaging using the Pannoramic 250 slide scanner 
(3DHISTECH).

Statistical analysis
For prospectively sampled patient material, no sample size determina-
tion was performed a priori as the effect size and variability of ex vivo 
drug response among patients were unknown before the study. Our 
sample sizes are similar to other published glioblastoma studies inves-
tigating the heterogeneity of patient samples and/or patient-derived 
explants4,38,60. For all other statistical analysis, their respective tests 
and significance values are reported in each corresponding figure 
panel and/or Methods. For linear correlations, Pearson correlation 
coefficients with two-tailed P values are annotated. When the Stu-
dent’s t-test was used for comparisons between groups (for example, 
drug treatment versus control), data distribution was assumed to be 
normal, but this was not formally tested. The Wilcoxon test was also 
used as a non-parametric equivalent. For matched patient samples 
or cells, paired t-tests or Wilcoxon tests were used. Unless otherwise 
stated, multiple testing correction was performed using either the 
Holm method for comparisons of fewer than 20 data points or the FDR 
procedure for larger datasets.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All transcriptomics data generated in this study, including scRNA-seq, 
bulk RNA-seq and DRUG-seq datasets, have been deposited in the 
National Center for Biotechnology Information’s Gene Expression 
Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) under the follow-
ing accession numbers: GSE214965 (DRUG-seq; multiplexed RNA-seq 
of 20 drugs, two timepoints); GSE214966 (scRNA-seq; four patients at 
baseline); GSE214967 (scRNA-seq; patient sample after vortioxetine 
versus DMSO treatment); and GSE214968 (RNA-seq; vortioxetine time-
course). Previously published scRNA-seq datasets analyzed in this 
study are publicly available at the GEO under the following accession 
numbers: GSE117891 and GSE131928. The publicly available GRCh38 
human reference genome was used to align RNA-seq reads. Proteomics 
and phosphoproteomics data can be accessed via Panorama (https://
panoramaweb.org/GlioB.url). DIA and phosphopeptide enrichment 
datasets are available from MASSIVE (ftp://massive.ucsd.edu/v04/
MSV000090357/). Drug–target annotations and protein–protein 
interaction data were retrieved from the following publicly available 
databases: Drug Target Commons (DTC; https://drugtargetcommons.
fimm.fi/) and STRING (https://string-db.org/). Other publicly available 

databases used in this study include DAVID (https://david.ncifcrf.gov/), 
KEGG (https://www.genome.jp/kegg/), Gene Ontology (http://gene-
ontology.org/) and PathwayNet (http://pathwaynet.princeton.edu/). 
Data provided in supplementary tables include ex vivo drug response 
of glioblastoma cells (pharmacoscopy scores; Supplementary Table 2), 
transcriptome-wide neural specificity and patient specificity scores 
derived from three scRNA-seq datasets (Supplementary Table 3) and 
in silico COSTAR drug screening results across 1,120,823 compounds 
(Supplementary Data 2). Source data are provided with this paper.

Code availability
Code for de-multiplexing of DRUG-seq data can be found on GitHub 
at https://github.com/RebekkaWegmann/drugseq_toolbox. COS-
TAR code and example data are available at https://www.snijderlab.
org/resources/COSTAR/. Image analysis was performed using the 
open-source CellProfiler package available at https://www.cellpro-
filer.org. All other analyses were performed using standard MATLAB 
R2019a–R2023a and R 3.6.0–4.3.0 code.
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Extended Data Fig. 1 | Single-cell RNA-Seq analysis and ex vivo drug 
profiling of standard-of-care treatment for glioblastoma. a, Example 
FACS gates of patient sample P011 to enrich for glioblastoma cells prior to 
scRNA-Seq (n = 50,000 cells shown). b, c, UMAP projection of 7684 single-
cell transcriptomes colored by b, patient (P007: 3,475 cells; P011: 1,490 cells; 
P012: 330 cells; P013: 2,389 cells, this study), and c, cluster-id. TME, tumor 
microenvironment; OPC, oligodendrocyte precursor cells; EC, endothelial 
cell; TAM, tumor-associated macrophage; NK, natural killer cell. d, % cells 
expressing genes (y-axis) per patient (data points) and subpopulation (x-axis) 
across 22 glioblastoma patient samples (dots) and 3 scRNA-Seq datasets (shape). 
e, Example IF images of patient samples (P047, P049) labeled with different 
glioblastoma markers (Nestin, EGFR, and CX43). f, Quantification of IF images in 
e across n = 4 glioblastoma patient samples (dots) for EGFR and CX43 expression 
in either Nestin+ or Nestin- cells. Two-tailed t-test. g, Genes (columns) enriched 
in (NES-, S100B-, and CD45-) triple-negative cells (‘Other’) compared to ([NES+ 
or S100B + ] and CD45-) cells across 22 patients (rows) from three scRNA-seq 
cohorts. Heatmap depicts log2(fold change) of genes enriched in ‘Other’ cells. 

Expression of top-10 genes (columns) per patient (rows) clustered into 3 gene 
modules. h, Cell-type specific enrichment analysis (Web-CSEA69) of the ‘Other’ 
enriched gene modules as in g. Dots represent individual Web-CSEA datasets, 
example member genes of their respective gene modules annotated above.  
i, Example single-cell crops of cleaved CASP3 + /- negative cells by IF in the image 
dataset used to train a convolutional neural network (CNN) based on nuclear 
(DAPI) and cell morphology (Brightfield) to detect apoptotic cells. j, Apoptotic 
classifier CNN performance in classifying the test image dataset (n = 1,214 single-
cell crops). k, % cells classified as apoptotic by the CNN across the prospective 
cohort (n = 27 patients) and marker defined populations. l, Temozolomide 
PCY score (TMZ; rows; n = 4 concentrations) across patient samples (columns; 
prospective cohort, n = 27; retrospective cohort, n = 18). Color indicates the PCY 
score for glioblastoma cells. Values beyond color scale limits set to minimum and 
maximum values. m, Clinical predictability of ex vivo TMZ response (averaged 
across n = 4 concentrations) in stratifying progression free survival (PFS) of the 
prospective cohort (n = 16 patients). P-values from survival curve comparison by 
the log-rank (Mantel-Cox) test. d,f,k, Boxplots as in Fig. 1b.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Real-time neuroactive and oncology drug screening 
in samples from patients with glioblastoma. a, PCY score matrix of oncology 
drugs (ONCDs; columns; n = 65 drugs) across glioblastoma patient samples 
(rows; n = 12 patients). Heatmap color scale indicates the PCY score of 
glioblastoma cells (Nestin + /S100B+ and CD45-). Asterisks (*) denote FDR-
adjusted P < 0.05 from a one-tailed t-test. b, PCY score matrix of neuroactive 
drugs (NADs, n = 67 drugs) averaged across glioblastoma patient samples (n = 27 
patients) for each cell population defined by IF markers and total cell number 
(TCN). Heatmap color scale indicates the mean PCY score of each respective 
population averaged across patients. a, b, Outliers beyond color scale limits  
were correspondingly set to minimum and maximum values. For clinical and 
drug annotations, see Supplementary Tables 1 and 2. c-g Glioblastoma PCY 
scores (y-axis) plotted per patient against selected parameters (x-axis).  
c, Age versus Elesclomol response. Linear regression line with a 95% confidence 
interval. Pearson correlation coefficient with two-tailed P-value annotated.  
d, TP53 mutational status versus Abemaciclib response. e, RET mutational status 

versus Pazopanib response. f, Biological sex versus Brexpiprazole response.  
g, FGFR2 copy number loss versus Sertindole response. Conf: confidence.  
h, Example IF images of a patient sample (P025) at baseline (DMSO control) and 
treated with Vortioxetine. Scale bar, 60 µm. i-k, Comparison of neuroactive 
drug PCY scores of glioblastoma cells (n = 67 NADs; original PCY score) to NAD 
PCY scores calculated by excluding cleaved CASP3+ apoptotic cells. Apoptotic 
cells are defined either by IF (PCY score without IF CASP3 + ) or by the apoptotic 
CNN classifier (PCY score without CNN CASP3 + ; see also Methods). Pearson 
correlation coefficients with P-values annotated. i, j, NAD screens performed in 
two validation patient samples (P048, P049). i, Comparison of the original PCY 
score to the PCY score without IF CASP3+ j, Comparison of the PCY score without 
IF CASP3+ the PCY score without CNN CASP3+ k, Comparison of the original PCY 
score to the PCY score without CNN CASP3+ across the prospective cohort  
(n = 27 patients) and neuroactive drugs (n = 67 drugs). d-g, Two-tailed  
Wilcoxon test. Boxplots as in Fig. 1b.
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Extended Data Fig. 3 | Concentration-response curves of glioblastoma  
cell lines. a-d, Concentration-response curves of glioblastoma cell lines  
(a, LN-229; b, LN-308; c, ZH-161; d, ZH-562) for a subset of neuroactive drugs 
(n = 9 drugs) across different concentrations (logarithmically spaced x-axis, 
n = 5 concentrations). a, b, Y-axis denotes relative cell counts or c, d, relative 

2D-projected spheroid area for 3D cultures normalized to DMSO control. 
Concentration-response curves (solid black lines) are fitted when possible with 
a two-parameter log-logistic distribution with 95% confidence intervals (shaded 
per cell line) and ED50 (red dashed lines). n = 3-5 replicate wells/drug (dots), 
n = 15 DMSO wells.

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-024-03224-y

opioid potassium

serotonin tacykynin

dopamine glutamate histamine melanin

acetylcholine adrenaline calcium cannabinoid

25

50

75

100
% Maxb

e

NES
CD45

SOX2

PROM1

CD14
MKI67

CD3D GFAP

S100B

−0.5 0.0 0.5
0.00

0.25

0.50

0.75

1.00

Neural specificity

Pa
tie

nt
 s

pe
ci

fic
ity

NES

CD45
SOX2

PROM1

CD14

MKI67CD3D

GFAP
S100B

0.00

0.25

0.50

0.75

1.00

−0.5 0.0 0.5

CD14

CD3D GFAP MKI67

NES

PROM1

CD45
S100B

SOX2

0.00

0.25

0.50

0.75

1.00

−0.5 0.0 0.5

% Exprs.

25
50
75

Mean Exprs.

−1
0
1
2

Lee et al. (n=4 GBM patients) Neftel et al. (n=9 GBM patients) Yu et al. (n=9 GBM patients)

Neural specificity Neural specificity

c

AD
R

A2
B

FL
U

C
  (

-) 
ct

rl

KI
F1

1 
(+

) c
trl

DAPI cl.CASP3 TUBB3

d

60μm

low

0

25

50

75

100

0 500 1000 1500 2000

DRD1 = high
DRD1 = low

69 14 2 0 0
51 21 7 2 1

high

0 500 1000 1500 2000

Time (days)

Number at risk
0 500 1000 1500 2000

83 20 3 0 0
37 15 6 2 1
0 500 1000 1500 2000

0 500 1000 1500 2000

12 1 0 0 0
108 34 9 2 1
0 500 1000 1500 2000

0 500 1000 1500 2000

104 27 5 2 1
16 8 4 0 0
0 500 1000 1500 2000

Su
rv

iv
al

 (%
)

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

P = 0.0013

**
P = 0.0086

**
P = 0.022

*
P = 0.039

*

Number at risk Number at risk Number at risk

low
high

low
high

HTR3A = high
HTR3A = low

DRD2 = high
DRD2 = low

low
high

Time (days) Time (days) Time (days)

TACR1 = high
TACR1 = low

PCY score

-0.5

0

0.5

Vilazodone
Fluvoxamine

Minaprine
Mirtazapine
Citalopram

Moclobemide
Venlafaxine

Clomipramine
Fluoxetine
Paroxetine

Vortioxetine

P0
22

P0
19

P0
32

P0
26

P0
14

P0
16

P0
20

P0
17

P0
21

P0
18

P0
27

P0
10

P0
09

P0
34

P0
06

P0
12

P0
33

P0
24

P0
05

P0
23

P0
30

P0
28

P0
07

P0
29

P0
11

P0
25

P0
13

********

*

*

************
***********

************
***************** Antidepressants (n=11)

P0
22

P0
19

P0
21

P0
14

P0
18

P0
12

P0
32

P0
26

P0
23

P0
10

P0
16

P0
20

P0
30

P0
17

P0
34

P0
06

P0
24

P0
05

P0
27

P0
09

P0
33

P0
28

P0
29

P0
11

P0
07

P0
13

P0
25

Paliperidone
Sertindole

Ziprasidone
Haloperidol
Iloperidone
Clozapine

Risperidone
Amisulpride
Quetiapine

Sulpiride
Lurasidone

Perospirone
Brexpiprazole

Olanzapine
Chlorpromazine

Zotepine

********
***

*

*

*****
******

***********
**************

***************
******************

Antipsychotics (n=16)

a

Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Functional genetic dependencies of glioblastoma on 
heterogeneously expressed neuroactive drug targets. a, PCY score matrix 
of antidepressants (left, n = 11 drugs) and antipsychotics (right, n = 16 drugs) 
across glioblastoma patient samples (n = 27 patients) subsetted from the original 
matrix, as shown in Fig. 2g. b, UMAP projection of 7684 single-cell transcriptomes 
from four glioblastoma patient samples (P007, P011, P012, P013), colored by 
aggregate scRNA-Seq expression across primary target genes (PTG) per receptor 
class in Fig. 3b. Color scaled to percent of maximum expression per receptor 
class. c, Neural specificity score (x-axis) versus patient specificity score (y-axis) 
for three independent glioblastoma scRNA-Seq datasets. Each dot represents 
a gene, with key marker genes annotated with labels. Key marker genes colored 
by mean detected expression across cells and dot size scales with percent of 
expressed cells. All other detected genes are colored in grey. (Lee et al., this 

study; n = 4 patients, n = 7684 cells, n = 15,668 genes; Neftel et al., n = 9 patients, 
n = 13,519 cells, n = 22,160 genes; Yu et al., n = 9 patients, n = 4307 cells, n = 19,098 
genes). d, Example IF images of siRNA-mediated gene silencing of the positive 
control gene (KIF11 (+) ctrl; left), negative control gene (FLUC (-) ctrl; middle), 
and ADRA2B (right). Scale bar, 60 µm. Cells are stained for DAPI (blue), cleaved 
CASP3 (yellow) and TUBB3 (red). e, Kaplan-Meier survival analysis and associated 
risk tables of the TCGA primary glioblastoma cohort (n = 120 patients) based on 
RNA-Seq expression of 4 PTGs (panels) that significantly reduce cell viability in 
Fig. 3d and stratify patient survival. Optimal cut-point for patient stratification 
(high, low) is determined by maximally selected rank statistics. Survival curves 
are compared using the log-rank (Mantel-Cox) test. 95% confidence intervals of 
Kaplan-Meier estimates are indicated in shaded curves.
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Extended Data Fig. 5 | Drug-target connectivity identified by COSTAR.  
a, Visualization of the local optimum in the cross-validated predictive power 
of COSTAR LASSO regression when fitting a binomial model to predict drug 
activity by PCY (hit vs neg) based on a drug’s connectivity pattern (COSTAR 
constellation, shown in Fig. 4b). X-axis denotes the Lambda regularization 
parameter (n = 60 unique values) and the y-axis denotes the cross-validated error 
of the model (deviance) across independent bootstrapped runs (n = 20 runs). 
Red dots (average) and light grey error bars (standard deviation) are indicated. 
Vertical dashed lines and colored circles indicate either the Lambda value with 
the minimal mean squared error (green, MSE) or the more conservative Lambda 

value with minimal MSE plus one standard deviation (blue, MSE + 1STD). b, ePTGs 
(x-axis) ranked by their integrated contribution ‘C’ to predict a hit (+1) or non-hit 
(-1) (y-axis) in the COSTAR model, separated for PCY-hit NADs (left) and ONCD 
(right). c, Drug-target connectivity of PCY-hit drugs that were part of the COSTAR 
training data (columns; n = 30 drugs) to primary and secondary drug targets 
(rows). COSTAR subscore (heatmap color scale) is the LASSO model coefficient 
multiplied by the integrated connectivity of drug-to-target mapping. Target 
genes with absolute COSTAR LASSO coefficients >0.1 are displayed. Target level 
(primary or secondary target) is annotated per gene on the left.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | DRUG-Seq confirms an AP-1 mediated transcriptional 
response specific to neuroactive drugs with anti-glioblastoma efficacy. 
a, Number of features detected by DRUG-Seq (y-axis) per drug condition 
(columns) and by time-point n = 20 drugs, n = 2 time-points, n = 4 replicates per 
drug/time-point. b, Principal component analysis (PCA) of averaged RNA-Seq 
counts per drug (color) and time-point (shape). c, Comparisons of drug induced 
transcriptional profiles by DRUG-Seq shown as log2(fold change) versus –
log10(adjusted P-value) for NADs vs NEGs (22 h, left), ONCDs vs CTRLs (6 h, 
middle), and ONCDs vs CTRLs (22 h, right). Significant genes by two-tailed Wald 
test (DESeq2) in light grey. Highlighted genes (blue) include AP-1 transcription 
factor (TF) network genes (PID AP1 PATHWAY79) and key COSTAR signature genes. 
d, Top enriched KEGG terms for differentially expressed genes based on DESeq2 
comparisons of NADs vs NEGs (6 h, left) and NADs vs NEGs (22 h, right). Bars 
represent the number of differentially expressed genes present in the annotation, 
and colors indicate –log10(false discovery rate). e, Four AP-1 transcription 
factors that are down-regulated or unchanged after PCY-hit NAD treatment at 

6 h. (y-axis, normalized RNA-Seq counts). Box plot groups (x-axis) correspond 
to drug categories and dots represent the average expression per drug (colored 
as in Extended Data Fig. 6b). ‘PCY-hit NAD’ and ‘PCY-hit ONCD’ abbreviated 
to NAD and ONCD, respectively. Two-tailed t-test. f, Transcription factor 
binding site enrichment analysis of genes that were upregulated in NAD treated 
cells in Extended Data Fig. 6c (22 h, left). Circles correspond to transcription 
factor annotations, circle sizes scale with the fraction of genes present in the 
annotation, and colors indicate –log10(false discovery rate). g, Correlation of 
average COSTAR signature expression (x-axis) with ex vivo patient neuroactive 
drug response (y-axis) plotted per drug (color) and time-point (shape). Mean 
glioblastoma PCY score across patients (n = 27 patients) of neuroactive drugs 
(n = 11 PCY-hit NADs, n = 3 NEGs) plotted against their corresponding geometric 
mean expression of AP-1 TFs and BTG1/2 genes as shown in Fig. 5d. Linear 
regression line with a 95% confidence interval. Pearson correlation coefficient 
with two-tailed P-value annotated. a, e, Boxplots as in Fig. 1b.
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Extended Data Fig. 7 | Vortioxetine induces a robust calcium response and 
alters the electrophysiological properties of glioblastoma cells. a, ER calcium 
store release measured by FLIPR assays in LN-229 cells (n = 4 assay plates; n = 18 
conditions; n = 12 wells/drug; DMSO and Thapsigargin (TG) positive control, 
n = 24 wells each). b, Extracellular calcium influx measured by FLIPR assays in 
F050.C (n = 17 conditions as in Fig. 5f). (*) denote conditions where the median 
[Ca2+ fold change] < 0. Black line: median value. a, b, Fold change relative to 
DMSO after drug treatment. Two-tailed t-test against DMSO. P-values adjusted 
for multiple comparisons by Holm correction. Black line: median value.  
c, Single-cell-resolved calcium response (ΔF/F0) measured by ratiometric Fura-2 
imaging across 6 cell lines (x-axis; n = 3,561 cells total). Mean change in calcium 
signal immediately after Vortioxtine treatment compared to baseline, each 
averaged across a 120 s time window. Paired (baseline vs drug treatment) two-
tailed Wilcoxon test. d, Calcium response type stratified by the presence (Ψ) or 
absence (Ø) of oscillatory calcium signaling at baseline (BASE) and Vortioxetine 
(VORT; 20) treatment. ‘VORT 1-2 Peaks’: non-oscillatory calcium response with 1-2 
peaks after VORT treatment. e, Heatmap of single-cell-resolved (rows) calcium 

response (ΔF/F0) for response type ‘VORT 1-2 Peaks’ across time (x-axis). NR: 
no response. f, Max (top) and mean (bottom) peak amplitude of ΔF/F0 for type 
‘BASE Ψ, VORT Ψ’ (n = 501 cells) displaying oscillatory calcium signaling during 
both time spans across the 6 cell lines in d. Paired two-tailed t-test. g, Resting 
membrane potential (Vm) of LN-229 (n = 13) and LN-308 cells (n = 10) measured 
by whole-cell patch-clamp before (CTRL) and after VORT treatment (10 µM) in 
matched single-cells (connected by grey lines). Paired two-tailed t-test.  
h, Representative single-cell current traces for each cell line (LN-229, LN-308) and 
condition (CTRL, VORT) corresponding to the voltage-clamp protocol (legend). 
i, Current-voltage characteristics (I-V curves) of LN-229 (n = 13) and LN-308 
cells (n = 10) in g, before (CTRL) and after VORT treatment (10 µM) in matched 
single-cells. Standard error of the mean (SEM) shown as error bars. See Methods 
for description of summary statistics. j, Relative gene (panels) expression upon 
siRNA knockdown (columns) normalized to the FLUC negative control siRNA 
(n = 3 biological replicates; dots). Two-tailed t-test with adjusted P-values after 
Holm correction. Boxplots as in Fig. 1b.
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Extended Data Fig. 8 | Vortioxetine induces an immediate and potent AP-1 
response as measured by time-resolved transcriptomics, proteomics, and 
phosphoproteomics. a, Time-course visualization of AP-1 (PID) and MAPK 
(KEGG) pathway induction following Vortioxetine treatment (20 µM) in LN-
229 cells measured by RNA-Seq (n = 6 time-points) and by proteomics (n = 3 
time-points). n = 3 replicates/time-point. Genes selected for visualization are 
significantly differentially expressed by RNA-Seq at all time-points compared 
to the first time-point (0 h). Heatmap color scale represents log2(fold change) 
compared to the 0 h time-point. b, Principal component analysis (PCA) of 
replicate-averaged RNA-Seq counts following Vortioxetine treatment (20 µM) 
in LN-229 cells (n = 3 replicates/time-point) colored by time-point. c, Time-point 
comparisons (left, 3 h vs 0 h; right, 9 h vs 0 h) of proteomics measurements 
following Vortioxetine treatment (Vort, 20 µM; n = 3 replicates/condition) in 
LN-229 cells shown as volcano plots of log2(fold change) versus –log10(P-value). 
Proteins above a –log10(0.05 P-value) threshold are colored in purple. Two-tailed 

t-test. d, Gene Ontology (GO) gene set enrichment analysis of signed –log10 
(P-value) of comparisons inc. Bars represent the normalized enrichment score 
(NES) and colors indicate –log10(false discovery rate). e, Log2(fold change) 
in protein expression per time-point (rows; relative to 0 h) for the proteins 
(columns) contributing to enriched GO term “GO:0001216 DNA-binding 
transcription activator activity” in Extended Data Fig. 8d. AP-1 transcription 
factors are labeled in red. f, Connected protein-protein interaction network of 
differentially abundant phosphoproteins upon Vortioxetine treatment (20 µM; 
n = 3 replicates/condition) in LN-229 cells at any time-point. 22 out of 67 connected 
and significantly enriched phosphoproteins are shown (asterisks; black labels) 
with high confidence STRING protein interactions (grey labels). Cluster IDs (node 
colors) are based on the MCL algorithm with annotated biological pathways. 
Heatmap depicts protein abundance-normalized phosphopeptide (rows) 
intensities of JUN and HSPB1 across time-points (columns). Both genes are also 
significantly upregulated at the transcript level across all time-points.
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Extended Data Fig. 9 | Single-cell RNA-Seq and immunofluorescence of 
Vortioxetine-treated glioblastoma patient cells. a, UMAP projection of 1736 
single cells from patient sample P024 upon 3 h of treatment with Vortioxetine 
(VORT; n = 577 cells; purple; 20 µM) or DMSO vehicle control DMSO; n = 1159 
cells; grey). b, Expression levels of the top five marker genes expressed in more 
than 10% of cells per scRNA-Seq cluster (columns) in Extended Data Fig. 9a. Circle 
sizes scale with the percent of cells within each cluster expressing each gene. 
Color scale represents log10(mean+0.1) expression. c, Cell cycle inference for 

each cluster in Extended Data Fig. 9b using Seurat version 4.3.080. d, Percent of 
CD45+ immune or NES+ glioblastoma cells expressing AP-1 factors measured 
by immunofluorescence in glioblastoma patient samples (n = 11 patients) 24 h 
after DMSO control or Vortioxetine-treatment ex vivo (10 and 20 µM). Patient-
matched paired two-tailed t-test (compared to DMSO control) with FDR-adjusted 
P-values. Boxplots show 25th–75th percentiles with a line at the median; whiskers 
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Extended Data Fig. 10 | Vortioxetine reduces tumor burden in vivo 
independent of serotonin modulation and affects tumor invasiveness and 
long term growth. a, Representative MRI images of three ZH-161 transplanted 
mice (columns) after 15 days of drug treatment (Trial II; n = 7 drugs). Tumor 
perimeters indicated in yellow. b, Quantification of tumor perimeters 
corresponding to a. Dots: individual mice per drug (columns); Red lines: mean 
values. Two-tailed t-test. c, Spheroid formation analyzed by the 2D-projected 
area of the ZH-562 line measured after 12 days of Vortioxetine treatment (0.1-
5 µM; n = 45-47 wells/condition). Data is shown as a boxplot, individual data 
points, and histogram. d, Number of migrated cells in a collagen-based spheroid 
invasion assay after 36 h of Vortioxetine treatment (2, 3.5, 5 µM) across four 
glioblastoma cell lines; LN-229 (n = 560-1125 cells/well), LN-308 (n = 137-426 cells/
well), ZH-161 (n = 200-574 cells/well), ZH-562 (n = 38-253 cells/well). e, Mean cell 
migration distance per condition (n = 5 replicate wells) for d. c-e, One-tailed t-test 
with adjusted P-values after Holm correction. f, Clonogenic survival measured 
by a resazurin-based cell viability assay after 11-13 days of Vortioxetine treatment 

(7 concentrations; 0.625-20 µM, n = 6 replicate wells/concentration) across four 
glioblastoma cell lines; LN-229 (n = 50 cells/well), LN-308 (n = 300 cells/well), 
ZH-161 (n = 500 cells/well), and ZH-562 (n = 500 cells/well). Dose-response fitted 
with a two-parameter log-logistic distribution with 95% confidence intervals 
(grey) and ED50 (dashed lines). g, Representative immunohistochemistry images 
of brain sections (n = 3 mice/treatment group) stained with human-specific 
Ki67 and Vimentin (VIM). h, Ki67 tumor intensity normalized to background 
with n = 3-4 mice (dots) analyzed per group. Two-tailed t-test comparing CITA 
and VORT treatment to (-) ctrl. i, Vortioxetine ex vivo PCY score (n = 27 patients; 
prospective cohort) stratified by Ki67 levels and EGFR CNV alterations. Group 2 
patients with low Ki67 levels and an absence of EGFR CNV alterations (n = 7/27; 
26%) were significantly less likely to respond to Vortioxetine ex vivo compared to 
Group 1 (Wilcoxon test; P = 0.011). Among the clinical/genetic parameters in  
Fig. 2d, e, Ki67 and EGFR alterations were the most predictive two parameters 
based on a regression subset selection for ex vivo Vortioxetine response.  
c, d, e, i, h, Boxplots as in Fig. 1b.
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